Automatic detection of Visceral Leishmaniasis in humans using Deep Learning

被引:0
|
作者
Clésio Gonçalves
Nathália Andrade
Armando Borges
Anderson Rodrigues
Rodrigo Veras
Bruno Aguiar
Romuere Silva
机构
[1] Universidade Federal do Piauí (UFPI),Engenharia Elétrica
[2] Centro de Inteligência em Agravos Tropicais Emergentes e Negligenciados,Sistemas de Informação
[3] UFPI,Ciência da Computação
[4] UFPI,Departamento de Medicina Comunitária
[5] UFPI,undefined
来源
关键词
Deep learning; Fine-tuning; Visceral Leishmaniasis; Microscopy.;
D O I
暂无
中图分类号
学科分类号
摘要
Leishmaniasis is a commonly neglected disease present in tropical and subtropical countries, affecting 1 billion people. Visceral Leishmaniasis (VL) is the most severe form and can lead to death if left untreated. In this work, we apply deep learning techniques to detect VL in humans through images of slides from the parasitological examination (microscopy) of the bone marrow, aiding in an automatic and accurate diagnosis. This work investigates five deep learning architectures combined with preprocessing, data augmentation, and fine-tuning techniques to detect this disease in images. We compared our results with five related state-of-the-art works, which showed that the proposed classification method surpassed them in all metrics. We achieve an Accuracy of 98.7%, an F1-Score of 98.7%, and a Kappa of 98.7%. Therefore, we demonstrated that trained deep learning models with microscopic slide imaging of bone marrow biological material could precisely help the specialist detect VL in humans.
引用
收藏
页码:3595 / 3601
页数:6
相关论文
共 50 条
  • [41] Automatic detection of breast masses using deep learning with YOLO approach
    Quinones-Espin, Alejandro Ernesto
    Perez-Diaz, Marlen
    Espin-Coto, Rafaela Mayelin
    Rodriguez-Linares, Deijany
    Lopez-Cabrera, Jose Daniel
    HEALTH AND TECHNOLOGY, 2023, 13 (06) : 915 - 923
  • [42] MalDozer: Automatic framework for android malware detection using deep learning
    Karbab, ElMouatez Billah
    Debbabi, Mourad
    Derhab, Abdelouahid
    Mouheb, Djedjiga
    DIGITAL INVESTIGATION, 2018, 24 : S48 - S59
  • [43] Automatic wound detection and size estimation using deep learning algorithms
    Carrion, Hector
    Jafari, Mohammad
    Bagood, Michelle Dawn
    Yang, Hsin-ya
    Isseroff, Roslyn Rivkah
    Gomez, Marcella
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (03)
  • [44] Automatic detection and classification of knee osteoarthritis using deep learning approach
    S. Sheik Abdullah
    M. Pallikonda Rajasekaran
    La radiologia medica, 2022, 127 : 398 - 406
  • [45] Automatic detection of breast masses using deep learning with YOLO approach
    Alejandro Ernesto Quiñones-Espín
    Marlen Perez-Diaz
    Rafaela Mayelín Espín-Coto
    Deijany Rodriguez-Linares
    José Daniel Lopez-Cabrera
    Health and Technology, 2023, 13 (6) : 915 - 923
  • [46] Multistage Framework for Automatic Face Mask Detection Using Deep Learning
    Sowmya, K. N.
    Rekha, P. M.
    Kumari, Trishala
    Debtera, Baru
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [47] Automatic and Reliable Leaf Disease Detection Using Deep Learning Techniques
    Chowdhury, Muhammad E. H.
    Rahman, Tawsifur
    Khandakar, Amith
    Ayari, Mohamed Arselene
    Khan, Aftab Ullah
    Khan, Muhammad Salman
    Al-Emadi, Nasser
    Reaz, Mamun Bin Ibne
    Islam, Mohammad Tariqul
    Ali, Sawal Hamid Md
    AGRIENGINEERING, 2021, 3 (02): : 294 - 312
  • [48] On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning
    Fraiwan, Mohammad
    Faouri, Esraa
    SENSORS, 2022, 22 (13)
  • [49] Automatic Fault Detection for Deep Learning Programs Using Graph Transformations
    Nikanjam, Amin
    Ben Braiek, Houssem
    Morovati, Mohammad Mehdi
    Khomh, Foutse
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2022, 31 (01)
  • [50] Automatic breast cancer detection and classification using deep learning techniques
    Lakshmi Prasanna, K.
    Ashwini, S.
    Test Engineering and Management, 2019, 81 (11-12): : 5505 - 5510