Automatic detection of Visceral Leishmaniasis in humans using Deep Learning

被引:0
|
作者
Clésio Gonçalves
Nathália Andrade
Armando Borges
Anderson Rodrigues
Rodrigo Veras
Bruno Aguiar
Romuere Silva
机构
[1] Universidade Federal do Piauí (UFPI),Engenharia Elétrica
[2] Centro de Inteligência em Agravos Tropicais Emergentes e Negligenciados,Sistemas de Informação
[3] UFPI,Ciência da Computação
[4] UFPI,Departamento de Medicina Comunitária
[5] UFPI,undefined
来源
关键词
Deep learning; Fine-tuning; Visceral Leishmaniasis; Microscopy.;
D O I
暂无
中图分类号
学科分类号
摘要
Leishmaniasis is a commonly neglected disease present in tropical and subtropical countries, affecting 1 billion people. Visceral Leishmaniasis (VL) is the most severe form and can lead to death if left untreated. In this work, we apply deep learning techniques to detect VL in humans through images of slides from the parasitological examination (microscopy) of the bone marrow, aiding in an automatic and accurate diagnosis. This work investigates five deep learning architectures combined with preprocessing, data augmentation, and fine-tuning techniques to detect this disease in images. We compared our results with five related state-of-the-art works, which showed that the proposed classification method surpassed them in all metrics. We achieve an Accuracy of 98.7%, an F1-Score of 98.7%, and a Kappa of 98.7%. Therefore, we demonstrated that trained deep learning models with microscopic slide imaging of bone marrow biological material could precisely help the specialist detect VL in humans.
引用
收藏
页码:3595 / 3601
页数:6
相关论文
共 50 条
  • [21] A Systematic Review on Automatic Insect Detection Using Deep Learning
    Teixeira, Ana Claudia
    Ribeiro, Jose
    Morais, Raul
    Sousa, Joaquim J.
    Cunha, Antonio
    AGRICULTURE-BASEL, 2023, 13 (03):
  • [22] Automatic Blossom Detection in Apple Trees using Deep Learning
    Bhattarai, Uddhav
    Bhusal, Santosh
    Majeed, Yaqoob
    Karkee, Manoj
    IFAC PAPERSONLINE, 2020, 53 (02): : 15810 - 15815
  • [23] Automatic oral cancer detection using deep learning techniques
    Sundari, T. Shanmuga
    Maheswari, M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 106
  • [24] Automatic Eye Disease Detection Using Machine Learning and Deep Learning Models
    Badah, Nouf
    Algefes, Amal
    AlArjani, Ashwaq
    Mokni, Raouia
    PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022, 2023, 475 : 773 - 787
  • [25] Deep Learning for Automatic Pneumonia Detection
    Gabruseva, Tatiana
    Poplavskiy, Dmytro
    Kalinin, Alexandr
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1436 - 1443
  • [26] Deep Learning on Automatic Fall Detection
    Monteiro, Sara
    Leite, Argentina
    Solteiro Pires, E. J.
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [27] Semi-automatic detection of the evolutionary forms of visceral leishmaniasis in microscopic blood smears
    Salazar, J.
    Vera, M.
    Huerfano, Y.
    Vera, M. I.
    Gelvez-Almeida, E.
    Valbuena, O.
    5TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (5TH IMRMPT), 2019, 1386
  • [28] Major Increase in Cases of Visceral Leishmaniasis in Humans in Paraguay
    Canese, Jorge
    PEDIATRIA-ASUNCION, 2010, 37 (03): : 167 - 168
  • [29] Timeliness for visceral leishmaniasis detection in Albania
    Bino, S.
    Vasili, A.
    Sulo, J.
    Myrseli, T.
    Petrela, R.
    Pipero, P.
    Crilly, J.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2016, 53 : 57 - 57
  • [30] Automatic guava disease detection using different deep learning approaches
    Tewari, Vaibhav
    Azeem, Noamaan Abdul
    Sharma, Sanjeev
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 9973 - 9996