Nonexistence of Bigeodesics in Planar Exponential Last Passage Percolation

被引:0
|
作者
Riddhipratim Basu
Christopher Hoffman
Allan Sly
机构
[1] Tata Institute of Fundamental Research,International Centre for Theoretical Sciences
[2] University of Washington,Department of Mathematics
[3] Princeton University,Department of Mathematics
来源
Communications in Mathematical Physics | 2022年 / 389卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bi-infinite geodesics are fundamental objects of interest in planar first passage percolation. A longstanding conjecture states that under mild conditions there are almost surely no bigeodesics; however, the result has not been proved in any case. For the exactly solvable model of directed last passage percolation on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} with i.i.d. exponential passage times, we study the corresponding question and show that almost surely the only bigeodesics are the trivial ones, i.e., the horizontal and vertical lines. The proof makes use of estimates for last passage time available from the integrable probability literature to study coalescence structure of finite geodesics, thereby making rigorous a heuristic argument due to Newman (Auffinger et al., 50 Years of First-passage Percolation, American Mathematical Soc., 2017).
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [41] Busemann functions and equilibrium measures in last passage percolation models
    Cator, Eric
    Pimentel, Leandro P. R.
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (1-2) : 89 - 125
  • [42] Busemann functions and equilibrium measures in last passage percolation models
    Eric Cator
    Leandro P. R. Pimentel
    Probability Theory and Related Fields, 2012, 154 : 89 - 125
  • [43] Interlacing and Scaling Exponents for the Geodesic Watermelon in Last Passage Percolation
    Riddhipratim Basu
    Shirshendu Ganguly
    Alan Hammond
    Milind Hegde
    Communications in Mathematical Physics, 2022, 393 : 1241 - 1309
  • [44] Anomalous shock fluctuations in TASEP and last passage percolation models
    Ferrari, Patrik L.
    Nejjar, Peter
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 161 (1-2) : 61 - 109
  • [45] Interlacing and Scaling Exponents for the Geodesic Watermelon in Last Passage Percolation
    Basu, Riddhipratim
    Ganguly, Shirshendu
    Hammond, Alan
    Hegde, Milind
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (3) : 1241 - 1309
  • [46] On some special directed last-passage percolation models
    Johansson, Kurt
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 333 - 346
  • [47] LONG-RANGE LAST-PASSAGE PERCOLATION ON THE LINE
    Foss, Sergey
    Martin, James B.
    Schmidt, Philipp
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (01): : 198 - 234
  • [48] Anomalous shock fluctuations in TASEP and last passage percolation models
    Patrik L. Ferrari
    Peter Nejjar
    Probability Theory and Related Fields, 2015, 161 : 61 - 109
  • [49] Coalescence of geodesics in exactly solvable models of last passage percolation
    Basu, Riddhipratim
    Sarkar, Sourav
    Sly, Allan
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [50] DIFFUSIVE SCALING LIMIT OF THE BUSEMANN PROCESS IN LAST PASSAGE PERCOLATION
    Usani, Ofer
    ANNALS OF PROBABILITY, 2024, 52 (05): : 1650 - 1712