Nonexistence of Bigeodesics in Planar Exponential Last Passage Percolation

被引:0
|
作者
Riddhipratim Basu
Christopher Hoffman
Allan Sly
机构
[1] Tata Institute of Fundamental Research,International Centre for Theoretical Sciences
[2] University of Washington,Department of Mathematics
[3] Princeton University,Department of Mathematics
来源
Communications in Mathematical Physics | 2022年 / 389卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bi-infinite geodesics are fundamental objects of interest in planar first passage percolation. A longstanding conjecture states that under mild conditions there are almost surely no bigeodesics; however, the result has not been proved in any case. For the exactly solvable model of directed last passage percolation on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} with i.i.d. exponential passage times, we study the corresponding question and show that almost surely the only bigeodesics are the trivial ones, i.e., the horizontal and vertical lines. The proof makes use of estimates for last passage time available from the integrable probability literature to study coalescence structure of finite geodesics, thereby making rigorous a heuristic argument due to Newman (Auffinger et al., 50 Years of First-passage Percolation, American Mathematical Soc., 2017).
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [21] Heavy tails in last-passage percolation
    Ben Hambly
    James B. Martin
    Probability Theory and Related Fields, 2007, 137 : 227 - 275
  • [22] Directed Last Passage Percolation with Discontinuous Weights
    Jeff Calder
    Journal of Statistical Physics, 2015, 158 : 903 - 949
  • [23] The oriented swap process and last passage percolation
    Bisi, Elia
    Cunden, Fabio Deelan
    Gibbons, Shane
    Romik, Dan
    RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (04) : 690 - 715
  • [24] RSK in last passage percolation: a unified approach
    Dauvergne, Duncan
    Nica, Mihai
    Virag, Balint
    PROBABILITY SURVEYS, 2022, 19 : 65 - 112
  • [25] UNIVERSALITY OF THE GEODESIC TREE IN LAST PASSAGE PERCOLATION
    Busani, Ofer
    Ferrari, Patrik L.
    ANNALS OF PROBABILITY, 2022, 50 (01): : 90 - 130
  • [26] Geodesic forests in last-passage percolation
    Lopez, Sergio I.
    Pimentel, Leandro P. R.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (01) : 304 - 324
  • [27] First-Passage Percolation with Exponential Times on a Ladder
    Renlund, Henrik
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (04): : 593 - 601
  • [28] Nonsymmetric Cauchy kernel, crystals and last passage percolation
    Azenhas, Olga
    Gobet, Thomas
    Lecouvey, Cedric
    TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (02) : 249 - 297
  • [29] Grid entropy in last passage percolation - A superadditive critical
    Gatea, Alexandru
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 169
  • [30] From stability to chaos in last-passage percolation
    Ahlberg, Daniel
    Deijfen, Maria
    Sfragara, Matteo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (01) : 411 - 422