Nonexistence of Bigeodesics in Planar Exponential Last Passage Percolation

被引:0
|
作者
Riddhipratim Basu
Christopher Hoffman
Allan Sly
机构
[1] Tata Institute of Fundamental Research,International Centre for Theoretical Sciences
[2] University of Washington,Department of Mathematics
[3] Princeton University,Department of Mathematics
来源
Communications in Mathematical Physics | 2022年 / 389卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bi-infinite geodesics are fundamental objects of interest in planar first passage percolation. A longstanding conjecture states that under mild conditions there are almost surely no bigeodesics; however, the result has not been proved in any case. For the exactly solvable model of directed last passage percolation on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} with i.i.d. exponential passage times, we study the corresponding question and show that almost surely the only bigeodesics are the trivial ones, i.e., the horizontal and vertical lines. The proof makes use of estimates for last passage time available from the integrable probability literature to study coalescence structure of finite geodesics, thereby making rigorous a heuristic argument due to Newman (Auffinger et al., 50 Years of First-passage Percolation, American Mathematical Soc., 2017).
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [1] Nonexistence of Bigeodesics in Planar Exponential Last Passage Percolation
    Basu, Riddhipratim
    Hoffman, Christopher
    Sly, Allan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (01) : 1 - 30
  • [2] Bigeodesics in First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 753 - 776
  • [3] Bigeodesics in First-Passage Percolation
    Michael Damron
    Jack Hanson
    Communications in Mathematical Physics, 2017, 349 : 753 - 776
  • [4] Local stationarity in exponential last-passage percolation
    Márton Balázs
    Ofer Busani
    Timo Seppäläinen
    Probability Theory and Related Fields, 2021, 180 : 113 - 162
  • [5] Last passage percolation in an exponential environment with discontinuous rates
    Ciech, Federico
    Georgiou, Nicos
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2165 - 2188
  • [6] Local stationarity in exponential last-passage percolation
    Balazs, Marton
    Busani, Ofer
    Seppalainen, Timo
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) : 113 - 162
  • [7] Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension
    Alexander, Kenneth S.
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [8] Optimal exponent for coalescence of finite geodesics in exponential last passage percolation
    Zhang, Lingfu
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 14
  • [9] On the Passage Time Geometry of the Last Passage Percolation Problem
    Alberts, Tom
    Cator, Eric
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 211 - 247
  • [10] Last Passage Percolation and Traveling Fronts
    Francis Comets
    Jeremy Quastel
    Alejandro F. Ramírez
    Journal of Statistical Physics, 2013, 152 : 419 - 451