Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator

被引:0
|
作者
Gelson dos Santos
Giovany M. Figueiredo
Marcos T. O. Pimenta
机构
[1] Universidade Federal do Pará,Faculdade de Matemática
[2] Universidade de Brasília,Departamento de Matemática
[3] Universidade Estadual Paulista,Departamento de Matemática e Computação, Faculdade de Ciência e Tecnologia
来源
关键词
1-Laplacian operator; Quasilinear elliptic operator; 35J20; 35J62; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we use minimax methods, comparison arguments, and an approximation result to show the existence and multiplicity of solutions for the following class of problems: -Δ1v=λf(v)inΩ,v≥0inΩ,v=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _1v =\lambda f(v)\quad \text {in}\quad \Omega \text {,}\\ v\ge 0\quad \text {in}\quad \Omega \text {,}\\ v=0\quad \text {on}\quad \partial \Omega \text {,} \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N,$$\end{document}N≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1,$$\end{document}λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter and the non-linearity f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function that can change sign and satisfies an area condition.
引用
收藏
相关论文
共 50 条
  • [31] Existence of solutions for 1-laplacian problems with singular first order terms
    Balducci, Francesco
    MANUSCRIPTA MATHEMATICA, 2025, 176 (02)
  • [32] A Berestycki-Lions' type result to a quasilinear elliptic problem involving the 1-Laplacian operator
    Ortiz Chata, Juan C.
    Pimenta, Marcos T. O.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [33] Existence of heteroclinic solutions for a class of problems involving the fractional Laplacian
    Alves, Claudianor O.
    Ambrosio, Vincenzo
    Torres Ledesma, Cesar E.
    ANALYSIS AND APPLICATIONS, 2019, 17 (03) : 425 - 451
  • [34] Existence of nonnegative viscosity solutions for a class of problems involving the ∞-Laplacian
    Bocea, Marian
    Mihailescu, Mihai
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [35] MULTIPLE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS INVOLVING CONCAVE-CONVEX NONLINEARITIES
    Nguyen Thanh Chung
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (26) : 1 - 17
  • [36] LARGE SOLUTIONS FOR THE ELLIPTIC 1-LAPLACIAN WITH ABSORPTION
    Moll, Salvador
    Petitta, Francesco
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 125 : 113 - 138
  • [37] FIRST EIGENFUNCTIONS OF THE 1-LAPLACIAN ARE VISCOSITY SOLUTIONS
    Kawohl, Bernd
    Schuricht, Friedemann
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 329 - 339
  • [38] Multiple Solutions for a Class of Dirichlet Double Eigenvalue Quasilinear Elliptic Systems Involving the (p1 , . . . , pn)-Laplacian Operator
    Hadjian, Armin
    Shakeri, Saleh
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [39] Anisotropic 1-Laplacian problems with unbounded weights
    Ortiz Chata, Juan C.
    Pimenta, Marcos T. O.
    Segura de Leon, Sergio
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (06):
  • [40] Anisotropic 1-Laplacian problems with unbounded weights
    Juan C. Ortiz Chata
    Marcos T. O. Pimenta
    Sergio Segura de León
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28