Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator

被引:0
|
作者
Gelson dos Santos
Giovany M. Figueiredo
Marcos T. O. Pimenta
机构
[1] Universidade Federal do Pará,Faculdade de Matemática
[2] Universidade de Brasília,Departamento de Matemática
[3] Universidade Estadual Paulista,Departamento de Matemática e Computação, Faculdade de Ciência e Tecnologia
来源
关键词
1-Laplacian operator; Quasilinear elliptic operator; 35J20; 35J62; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we use minimax methods, comparison arguments, and an approximation result to show the existence and multiplicity of solutions for the following class of problems: -Δ1v=λf(v)inΩ,v≥0inΩ,v=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _1v =\lambda f(v)\quad \text {in}\quad \Omega \text {,}\\ v\ge 0\quad \text {in}\quad \Omega \text {,}\\ v=0\quad \text {on}\quad \partial \Omega \text {,} \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N,$$\end{document}N≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1,$$\end{document}λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter and the non-linearity f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function that can change sign and satisfies an area condition.
引用
收藏
相关论文
共 50 条