Four-dimensional almost Einstein manifolds with skew-circulant stuctures

被引:1
|
作者
Iva Dokuzova
Dimitar Razpopov
机构
[1] University of Plovdiv Paisii Hilendarski,Department of Algebra and Geometry
[2] Agricultural University of Plovdiv,Department of Mathematics and Physics
来源
Journal of Geometry | 2020年 / 111卷
关键词
Riemannian manifold; Einstein manifold; sectional curvatures; Ricci curvature; Lie group; 53B20; 53C15; 53C25; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a four-dimensional Riemannian manifold M with an additional structure S, whose fourth power is minus identity. In a local coordinate system the components of the metric g and the structure S form skew-circulant matrices. Both structures S and g are compatible, such that an isometry is induced in every tangent space of M. By a special identity for the curvature tensor, generated by the Riemannian connection of g, we determine classes of Einstein and almost Einstein manifolds. For such manifolds we obtain propositions for the sectional curvatures of some characteristic 2-planes in a tangent space of M. We consider a Hermitian manifold associated with the studied manifold and find conditions for g, under which it is a Kähler manifold. We construct some examples of the considered manifolds on Lie groups.
引用
收藏
相关论文
共 50 条
  • [21] Three- and Four-Dimensional Einstein-like Manifolds and Homogeneity
    Peter Bueken
    Lieven Vanhecke
    Geometriae Dedicata, 1999, 75 : 123 - 136
  • [22] Conformally Einstein and Bach-flat four-dimensional homogeneous manifolds
    Calvino-Louzao, E.
    Garcia-Martinez, X.
    Garcia-Rio, E.
    Gutierrez-Rodriguez, I.
    Vazquez-Lorenzo, R.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 347 - 374
  • [23] On Holonomy Algebras of Four-Dimensional Generalized Quasi-Einstein Manifolds
    Bahar Kırık
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019, 89 : 711 - 719
  • [24] Einstein four-manifolds with skew torsion
    Ferreira, Ana Cristina
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2341 - 2351
  • [25] FOUR-DIMENSIONAL HOMOGENEOUS MANIFOLDS SATISFYING SOME EINSTEIN-LIKE CONDITIONS
    Garcia-Rio, Eduardo
    Haji-Badali, Ali
    Marino-Villar, Rodrigo
    Elena Vazquez-Abal, M.
    KODAI MATHEMATICAL JOURNAL, 2020, 43 (03) : 465 - 488
  • [26] Bochner-type Formulas for the Weyl Tensor on Four-dimensional Einstein Manifolds
    Catino, Giovanni
    Mastrolia, Paolo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (12) : 3794 - 3823
  • [27] Holomorphic harmonic morphisms from four-dimensional non-Einstein manifolds
    Gudmundsson, Sigmundur
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (01)
  • [28] On four-dimensional Einstein affine hyperspheres
    Hu, Zejun
    Li, Haizhong
    Vrancken, Luc
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 50 : 20 - 33
  • [29] Four-dimensional homogeneous Lorentzian manifolds
    Giovanni Calvaruso
    Amirhesam Zaeim
    Monatshefte für Mathematik, 2014, 174 : 377 - 402
  • [30] Generalized Osserman four-dimensional manifolds
    Bonome, A
    Castro, P
    García-Río, E
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (22) : 4813 - 4822