A Theory of Super-Resolution from Short-Time Fourier Transform Measurements

被引:0
|
作者
Céline Aubel
David Stotz
Helmut Bölcskei
机构
[1] ETH Zurich,Dept. IT & EE
[2] Kantonsschule am Burggraben,undefined
关键词
Super-resolution; Sparsity; Inverse problems in measure spaces; Short-time Fourier transform; 28A33; 46E27; 46N10; 42B10; 32A10; 46F05;
D O I
暂无
中图分类号
学科分类号
摘要
While spike trains are obviously not band-limited, the theory of super-resolution tells us that perfect recovery of unknown spike locations and weights from low-pass Fourier transform measurements is possible provided that the minimum spacing, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, between spikes is not too small. Specifically, for a measurement cutoff frequency of fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c$$\end{document}, Donoho (SIAM J Math Anal 23(5):1303–1331, 1992) showed that exact recovery is possible if the spikes (on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}) lie on a lattice and Δ>1/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1/f_c$$\end{document}, but does not specify a corresponding recovery method. Candès and Fernandez-Granda (Commun Pure Appl Math 67(6):906–956, 2014; Inform Inference 5(3):251–303, 2016) provide a convex programming method for the recovery of periodic spike trains (i.e., spike trains on the torus T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}), which succeeds provably if Δ>2/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 2/f_c$$\end{document} and fc≥128\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c \ge 128$$\end{document} or if Δ>1.26/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1.26/f_c$$\end{document} and fc≥103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c \ge 10^3$$\end{document}, and does not need the spikes within the fundamental period to lie on a lattice. In this paper, we develop a theory of super-resolution from short-time Fourier transform (STFT) measurements. Specifically, we present a recovery method similar in spirit to the one in Candès and Fernandez-Granda  (2014) for pure Fourier measurements. For a STFT Gaussian window function of width σ=1/(4fc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = 1/(4f_c)$$\end{document} this method succeeds provably if Δ>1/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1/f_c$$\end{document}, without restrictions on fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c$$\end{document}. Our theory is based on a measure-theoretic formulation of the recovery problem, which leads to considerable generality in the sense of the results being grid-free and applying to spike trains on both R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. The case of spike trains on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} comes with significant technical challenges. For recovery of spike trains on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} we prove that the correct solution can be approximated—in weak-* topology—by solving a sequence of finite-dimensional convex programming problems.
引用
收藏
页码:45 / 107
页数:62
相关论文
共 50 条
  • [31] SIGNAL ESTIMATION FROM MODIFIED SHORT-TIME FOURIER-TRANSFORM
    GRIFFIN, DW
    LIM, JS
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (02): : 236 - 243
  • [32] Stable signal recovery from the roots of the short-time Fourier transform
    Bodmann, Bernhard G.
    Liner, Christopher L.
    WAVELETS AND SPARSITY XIV, 2011, 8138
  • [33] Planar Sampling Sets for the Short-Time Fourier Transform
    Jaming, Philippe
    Speckbacher, Michael
    CONSTRUCTIVE APPROXIMATION, 2021, 53 (03) : 479 - 502
  • [34] Directional Short-Time Fourier Transform and Quasiasymptotics of Distributions
    Buralieva, J. V.
    Saneva, K.
    Atanasova, S.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (01) : 3 - 10
  • [35] The directional short-time fractional Fourier transform of distributions
    Ferizi, Astrit
    Hadzi-Velkova Saneva, Katerina
    Maksimovic, Snjezana
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
  • [36] Short-time quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    OPTIK, 2021, 245
  • [37] Optimal short-time Fourier transform for monocomponent signals
    Güven, HE
    PROCEEDINGS OF THE IEEE 12TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, 2004, : 312 - 315
  • [38] Short-Time Fractional Fourier Transform and Its Applications
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2568 - 2580
  • [39] Learning to short-time Fourier transform in spectrum sensing
    Zhou, Longmei
    Sun, Zhuo
    Wang, Wenbo
    PHYSICAL COMMUNICATION, 2017, 25 : 420 - 425
  • [40] Short-time Fourier transform laser Doppler holography
    Samson, B.
    Atlan, M.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2013, 8