A Theory of Super-Resolution from Short-Time Fourier Transform Measurements

被引:0
|
作者
Céline Aubel
David Stotz
Helmut Bölcskei
机构
[1] ETH Zurich,Dept. IT & EE
[2] Kantonsschule am Burggraben,undefined
关键词
Super-resolution; Sparsity; Inverse problems in measure spaces; Short-time Fourier transform; 28A33; 46E27; 46N10; 42B10; 32A10; 46F05;
D O I
暂无
中图分类号
学科分类号
摘要
While spike trains are obviously not band-limited, the theory of super-resolution tells us that perfect recovery of unknown spike locations and weights from low-pass Fourier transform measurements is possible provided that the minimum spacing, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, between spikes is not too small. Specifically, for a measurement cutoff frequency of fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c$$\end{document}, Donoho (SIAM J Math Anal 23(5):1303–1331, 1992) showed that exact recovery is possible if the spikes (on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}) lie on a lattice and Δ>1/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1/f_c$$\end{document}, but does not specify a corresponding recovery method. Candès and Fernandez-Granda (Commun Pure Appl Math 67(6):906–956, 2014; Inform Inference 5(3):251–303, 2016) provide a convex programming method for the recovery of periodic spike trains (i.e., spike trains on the torus T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}), which succeeds provably if Δ>2/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 2/f_c$$\end{document} and fc≥128\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c \ge 128$$\end{document} or if Δ>1.26/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1.26/f_c$$\end{document} and fc≥103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c \ge 10^3$$\end{document}, and does not need the spikes within the fundamental period to lie on a lattice. In this paper, we develop a theory of super-resolution from short-time Fourier transform (STFT) measurements. Specifically, we present a recovery method similar in spirit to the one in Candès and Fernandez-Granda  (2014) for pure Fourier measurements. For a STFT Gaussian window function of width σ=1/(4fc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = 1/(4f_c)$$\end{document} this method succeeds provably if Δ>1/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1/f_c$$\end{document}, without restrictions on fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c$$\end{document}. Our theory is based on a measure-theoretic formulation of the recovery problem, which leads to considerable generality in the sense of the results being grid-free and applying to spike trains on both R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. The case of spike trains on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} comes with significant technical challenges. For recovery of spike trains on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} we prove that the correct solution can be approximated—in weak-* topology—by solving a sequence of finite-dimensional convex programming problems.
引用
收藏
页码:45 / 107
页数:62
相关论文
共 50 条
  • [21] Inversion formulas for the short-time Fourier transform
    Feichtinger, Hans G.
    Weisz, Ferenc
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) : 507 - 521
  • [22] Directional Short-Time Fourier Transform of Ultradistributions
    Sanja Atanasova
    Snježana Maksimović
    Stevan Pilipović
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3069 - 3087
  • [23] Staggered parallel short-time Fourier transform
    Labao, Alfonso B.
    Camaclang, Rodolfo C., III
    Caro, Jaime D. L.
    DIGITAL SIGNAL PROCESSING, 2019, 93 : 70 - 86
  • [24] Directional Short-Time Fourier Transform of Ultradistributions
    Atanasova, Sanja
    Maksimovic, Snjezana
    Pilipovic, Stevan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3069 - 3087
  • [25] Sliding Short-Time Fractional Fourier Transform
    Huang, Gaowa
    Zhang, Feng
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1823 - 1827
  • [26] Inversion formulas for the short-time Fourier transform
    Hans G. Feichtinger
    Ferenc Weisz
    The Journal of Geometric Analysis, 2006, 16 : 507 - 521
  • [27] Multiplier theorems for the short-time Fourier transform
    Weisz, Ferenc
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (01) : 133 - 149
  • [29] Sparse Phase Retrieval from Short-Time Fourier Measurements
    Eldar, Yonina C.
    Sidorenko, Pavel
    Mixon, Dustin G.
    Barel, Shaby
    Cohen, Oren
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (05) : 638 - 642
  • [30] SIGNAL RECONSTRUCTION FROM SHORT-TIME FOURIER-TRANSFORM MAGNITUDE
    NAWAB, SH
    QUATIERI, TF
    LIM, JS
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (04): : 986 - 998