A Theory of Super-Resolution from Short-Time Fourier Transform Measurements

被引:0
|
作者
Céline Aubel
David Stotz
Helmut Bölcskei
机构
[1] ETH Zurich,Dept. IT & EE
[2] Kantonsschule am Burggraben,undefined
关键词
Super-resolution; Sparsity; Inverse problems in measure spaces; Short-time Fourier transform; 28A33; 46E27; 46N10; 42B10; 32A10; 46F05;
D O I
暂无
中图分类号
学科分类号
摘要
While spike trains are obviously not band-limited, the theory of super-resolution tells us that perfect recovery of unknown spike locations and weights from low-pass Fourier transform measurements is possible provided that the minimum spacing, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, between spikes is not too small. Specifically, for a measurement cutoff frequency of fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c$$\end{document}, Donoho (SIAM J Math Anal 23(5):1303–1331, 1992) showed that exact recovery is possible if the spikes (on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}) lie on a lattice and Δ>1/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1/f_c$$\end{document}, but does not specify a corresponding recovery method. Candès and Fernandez-Granda (Commun Pure Appl Math 67(6):906–956, 2014; Inform Inference 5(3):251–303, 2016) provide a convex programming method for the recovery of periodic spike trains (i.e., spike trains on the torus T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}), which succeeds provably if Δ>2/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 2/f_c$$\end{document} and fc≥128\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c \ge 128$$\end{document} or if Δ>1.26/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1.26/f_c$$\end{document} and fc≥103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c \ge 10^3$$\end{document}, and does not need the spikes within the fundamental period to lie on a lattice. In this paper, we develop a theory of super-resolution from short-time Fourier transform (STFT) measurements. Specifically, we present a recovery method similar in spirit to the one in Candès and Fernandez-Granda  (2014) for pure Fourier measurements. For a STFT Gaussian window function of width σ=1/(4fc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = 1/(4f_c)$$\end{document} this method succeeds provably if Δ>1/fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta > 1/f_c$$\end{document}, without restrictions on fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c$$\end{document}. Our theory is based on a measure-theoretic formulation of the recovery problem, which leads to considerable generality in the sense of the results being grid-free and applying to spike trains on both R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. The case of spike trains on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} comes with significant technical challenges. For recovery of spike trains on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} we prove that the correct solution can be approximated—in weak-* topology—by solving a sequence of finite-dimensional convex programming problems.
引用
收藏
页码:45 / 107
页数:62
相关论文
共 50 条
  • [1] A Theory of Super-Resolution from Short-Time Fourier Transform Measurements
    Aubel, Celine
    Stotz, David
    Bolcskei, Helmut
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (01) : 45 - 107
  • [2] SUPER-RESOLUTION FROM SHORT-TIME FOURIER TRANSFORM MEASUREMENTS
    Aubel, Celine
    Stotz, David
    Boelcskei, Helmut
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Super-Resolution Reconstruction from Truncated Fourier Transform
    Isaev, Mikhail
    Novikov, Roman G.
    Sabinin, Grigory, V
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 63 - 69
  • [4] An Adaptive Resolution Computationally Efficient Short-Time Fourier Transform
    Qaisar, Saeed Mian
    Fesquet, Laurent
    Renaudin, Andmarc
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2008, 2008
  • [5] Directional short-time Fourier transform
    Giv, Hossein Hosseini
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 100 - 107
  • [6] The Feedforward Short-Time Fourier Transform
    Garrido, Mario
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (09) : 868 - 872
  • [7] Short-time Fourier transform and superoscillations
    Alpay, Daniel
    De Martino, Antonino
    Diki, Kamal
    Struppa, Daniele C.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 73
  • [8] A SHORT-TIME FOURIER-TRANSFORM
    OWENS, FJ
    MURPHY, MS
    SIGNAL PROCESSING, 1988, 14 (01) : 3 - 10
  • [9] Novel Short-Time Fractional Fourier Transform: Theory, Implementation, and Applications
    Shi, Jun
    Zheng, Jiabin
    Liu, Xiaoping
    Xiang, Wei
    Zhang, Qinyu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3280 - 3295
  • [10] RECOVERING SIGNALS FROM THE SHORT-TIME FOURIER TRANSFORM MAGNITUDE
    Jaganathan, Kishore
    Eldar, Yonina C.
    Hassibi, Babak
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3277 - 3281