Forbidden Subgraphs and Weak Locally Connected Graphs

被引:0
|
作者
Xia Liu
Houyuan Lin
Liming Xiong
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics and Beijing Key Laboratory on MCAACI
[2] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Forbidden subgraph; Supereulerian; Hamiltonian; 2-factor; Collapsible;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is called H-free if it has no induced subgraph isomorphic to H. A graph is called Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^i$$\end{document}-locally connected if G[{x∈V(G):1≤dG(w,x)≤i}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{ x\in V(G): 1\le d_G(w, x)\le i\}]$$\end{document} is connected and N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected if G[{uv:{uw,vw}⊆E(G)}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{uv: \{uw, vw\}\subseteq E(G)\}]$$\end{document} is connected for every vertex w of G, respectively. In this paper, we prove the following.Every 2-connected P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}-free graph of minimum degree at least three other than the Petersen graph has a spanning Eulerian subgraph. This implies that every H-free 3-connected graph (or connected N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^4$$\end{document}-locally connected graph of minimum degree at least three) other than the Petersen graph is supereulerian if and only if H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}, where Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document} is a path of i vertices.Every 2-edge-connected H-free graph other than {K2,2k+1:kis a positive integer}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{2, 2k+1}:k ~\text {is a positive integer}\}$$\end{document} is supereulerian if and only if H is an induced subgraph of P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_4$$\end{document}.If every connected H-free N3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^3$$\end{document}-locally connected graph other than the Petersen graph of minimum degree at least three is supereulerian, then H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document} or T2,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2, 2, 3}$$\end{document}, i.e., the graph obtained by identifying exactly one end vertex of P3,P3,P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_3, P_3, P_4$$\end{document}, respectively.If every 3-connected H-free N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected graph is hamiltonian, then H is an induced subgraph of K1,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,4}$$\end{document}. We present an algorithm to find a collapsible subgraph of a graph with girth 4 whose idea is used to prove our first conclusion above. Finally, we propose that the reverse of the last two items would be true.
引用
收藏
页码:1671 / 1690
页数:19
相关论文
共 50 条
  • [41] Hitting forbidden subgraphs in graphs of bounded treewidth
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    INFORMATION AND COMPUTATION, 2017, 256 : 62 - 82
  • [42] Characterizing Path Graphs by Forbidden Induced Subgraphs
    Leveque, Benjamin
    Maffray, Frederic
    Preissmann, Myriam
    JOURNAL OF GRAPH THEORY, 2009, 62 (04) : 369 - 384
  • [43] Triangle-free graphs and forbidden subgraphs
    Brandt, S
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 25 - 33
  • [44] Characterizing forbidden subgraphs that imply pancyclicity in 4-connected, claw-free graphs
    Carraher, James
    Ferrara, Michael
    Morris, Timothy
    Santana, Michael
    DISCRETE MATHEMATICS, 2021, 344 (10)
  • [45] Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 189 - 200
  • [46] Forbidden subgraphs in generating graphs of finite groups
    Università Degli Studi di Padova, Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, Padova
    35121, Italy
    arXiv,
  • [47] ON AUTOMORPHISMS OF INFINITE-GRAPHS WITH FORBIDDEN SUBGRAPHS
    SEIFTER, N
    COMBINATORICA, 1984, 4 (04) : 351 - 356
  • [48] Universal graphs with forbidden subgraphs and algebraic closure
    Cherlin, G
    Shelah, S
    Shi, ND
    ADVANCES IN APPLIED MATHEMATICS, 1999, 22 (04) : 454 - 491
  • [49] On Forbidden Induced Subgraphs for Unit Disk Graphs
    Atminas, Aistis
    Zamaraev, Viktor
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (01) : 57 - 97
  • [50] RAMSEY PROPERTY FOR GRAPHS WITH FORBIDDEN COMPLETE SUBGRAPHS
    NESETRIL, J
    RODL, V
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (03) : 243 - 249