Forbidden Subgraphs and Weak Locally Connected Graphs

被引:0
|
作者
Xia Liu
Houyuan Lin
Liming Xiong
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics and Beijing Key Laboratory on MCAACI
[2] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Forbidden subgraph; Supereulerian; Hamiltonian; 2-factor; Collapsible;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is called H-free if it has no induced subgraph isomorphic to H. A graph is called Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^i$$\end{document}-locally connected if G[{x∈V(G):1≤dG(w,x)≤i}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{ x\in V(G): 1\le d_G(w, x)\le i\}]$$\end{document} is connected and N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected if G[{uv:{uw,vw}⊆E(G)}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{uv: \{uw, vw\}\subseteq E(G)\}]$$\end{document} is connected for every vertex w of G, respectively. In this paper, we prove the following.Every 2-connected P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}-free graph of minimum degree at least three other than the Petersen graph has a spanning Eulerian subgraph. This implies that every H-free 3-connected graph (or connected N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^4$$\end{document}-locally connected graph of minimum degree at least three) other than the Petersen graph is supereulerian if and only if H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}, where Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document} is a path of i vertices.Every 2-edge-connected H-free graph other than {K2,2k+1:kis a positive integer}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{2, 2k+1}:k ~\text {is a positive integer}\}$$\end{document} is supereulerian if and only if H is an induced subgraph of P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_4$$\end{document}.If every connected H-free N3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^3$$\end{document}-locally connected graph other than the Petersen graph of minimum degree at least three is supereulerian, then H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document} or T2,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2, 2, 3}$$\end{document}, i.e., the graph obtained by identifying exactly one end vertex of P3,P3,P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_3, P_3, P_4$$\end{document}, respectively.If every 3-connected H-free N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected graph is hamiltonian, then H is an induced subgraph of K1,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,4}$$\end{document}. We present an algorithm to find a collapsible subgraph of a graph with girth 4 whose idea is used to prove our first conclusion above. Finally, we propose that the reverse of the last two items would be true.
引用
收藏
页码:1671 / 1690
页数:19
相关论文
共 50 条
  • [21] Degree Distance in Graphs with Forbidden Subgraphs
    Mafuta, Phillip
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 90 (03) : 685 - 707
  • [22] Forbidden subgraphs for supereulerian and hamiltonian graphs
    Yang, Xiaojing
    Du, Junfeng
    Xiong, Liming
    DISCRETE APPLIED MATHEMATICS, 2021, 288 : 192 - 200
  • [23] Traceability in graphs with forbidden triples of subgraphs
    Gould, RJ
    Harris, JM
    DISCRETE MATHEMATICS, 1998, 189 (1-3) : 123 - 132
  • [24] Graphs with forbidden subgraphs and leaf number
    Mafuta P.
    Mazorodze J.P.
    Mushanyu J.
    Nhawu G.
    Afrika Matematika, 2018, 29 (7-8) : 1073 - 1080
  • [25] ON CLASSES OF GRAPHS DETERMINED BY FORBIDDEN SUBGRAPHS
    POLJAK, S
    RODL, V
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1983, 33 (01) : 27 - 33
  • [26] The number of graphs with large forbidden subgraphs
    Bollobas, Bela
    Nikiforov, Vladimir
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 1964 - 1968
  • [28] Three forbidden subgraphs for line graphs
    Yang, YS
    Lin, JH
    Wang, CL
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 287 - 292
  • [29] On the girth of forbidden subgraphs of coloring graphs
    Shavo, Kara Walcher
    Svensson, Elias
    Waldron, Abigail
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [30] The Index of Signed Graphs with Forbidden Subgraphs
    Wang, Zhiwen
    Liu, Shuting
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)