Real Hypersurfaces with Quadratic Killing Normal Jacobi Operator in the Real Grassmannians of Rank Two

被引:0
|
作者
Hyunjin Lee
Young Jin Suh
机构
[1] Kyungpook National University,The Research Institute of Real and Complex Manifolds (RIRCM)
[2] Kyungpook National University,Department of Mathematics and RIRCM
来源
Results in Mathematics | 2021年 / 76卷
关键词
(Quadratic) Killing normal Jacobi operator; cyclic parallel normal Jacobi operator; -isotropic; -principal; real hypersurfaces; real Grassmannians of rank two; complex quadric; complex hyperbolic quadric; Primary 53C40; Secondary 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, first we introduce a new notion of (quadratic) Killing normal Jacobi operator (or cyclic parallel normal Jacobi operator) and its geometric meaning for real hypersurfaces in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}, ε=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\pm 1$$\end{document}, where Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document} denotes the complex quadric Qm(ε)=Qm=SOm+2/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Q^{m}(\varepsilon )=Q^{m}=SO_{m+2}/SO_{m}SO_{2}$$\end{document} for ε=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =1$$\end{document} and Qm(ε)=Qm∗=SOm,20/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )= Q^{m*}=SO_{m,2}^{0}/SO_{m}SO_{2}$$\end{document} for ε=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =-1$$\end{document}, respectively. Next, we give a non-existence theorem for Hopf real hypersurfaces satisfying quadratic Killing normal Jacobi operator in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}.
引用
收藏
相关论文
共 50 条