Real Hypersurfaces with Quadratic Killing Normal Jacobi Operator in the Real Grassmannians of Rank Two

被引:0
|
作者
Hyunjin Lee
Young Jin Suh
机构
[1] Kyungpook National University,The Research Institute of Real and Complex Manifolds (RIRCM)
[2] Kyungpook National University,Department of Mathematics and RIRCM
来源
Results in Mathematics | 2021年 / 76卷
关键词
(Quadratic) Killing normal Jacobi operator; cyclic parallel normal Jacobi operator; -isotropic; -principal; real hypersurfaces; real Grassmannians of rank two; complex quadric; complex hyperbolic quadric; Primary 53C40; Secondary 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, first we introduce a new notion of (quadratic) Killing normal Jacobi operator (or cyclic parallel normal Jacobi operator) and its geometric meaning for real hypersurfaces in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}, ε=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\pm 1$$\end{document}, where Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document} denotes the complex quadric Qm(ε)=Qm=SOm+2/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Q^{m}(\varepsilon )=Q^{m}=SO_{m+2}/SO_{m}SO_{2}$$\end{document} for ε=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =1$$\end{document} and Qm(ε)=Qm∗=SOm,20/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )= Q^{m*}=SO_{m,2}^{0}/SO_{m}SO_{2}$$\end{document} for ε=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =-1$$\end{document}, respectively. Next, we give a non-existence theorem for Hopf real hypersurfaces satisfying quadratic Killing normal Jacobi operator in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Real Hypersurfaces in Complex Grassmannians of Rank Two
    Li, Dehe
    Zhai, Shujie
    MATHEMATICS, 2021, 9 (24)
  • [22] Commuting Structure Jacobi Operator for Real Hypersurfaces in Complex Two-plane Grassmannians
    Machado, Carlos J. G.
    de Dios Perez, Juan
    Suh, Young Jin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) : 111 - 122
  • [23] Real hypersurfaces in complex two-plane Grassmannians with commuting structure Jacobi operator
    Suh, Young Jin
    Yang, Hae Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 495 - 507
  • [24] Real hypersurfaces in complex two-plane grassmannians with parallel structure Jacobi operator
    Jeong, I.
    Perez, J. D.
    Suh, Y. J.
    ACTA MATHEMATICA HUNGARICA, 2009, 122 (1-2) : 173 - 186
  • [25] Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians
    Carlos J. G. Machado
    Juan de Dios Pérez
    Young Jin Suh
    Acta Mathematica Sinica, English Series, 2015, 31 : 111 - 122
  • [26] Real hypersurfaces in complex two-plane grassmannians with parallel structure Jacobi operator
    I. Jeong
    J. D. Pérez
    Y. J. Suh
    Acta Mathematica Hungarica, 2009, 122 : 173 - 186
  • [27] Commuting Structure Jacobi Operator for Real Hypersurfaces in Complex Two-plane Grassmannians
    Carlos J.G.MACHADO
    Juan de Dios PREZ
    Young Jin SUH
    Acta Mathematica Sinica,English Series, 2015, (01) : 111 - 122
  • [28] Commuting Structure Jacobi Operator for Real Hypersurfaces in Complex Two-plane Grassmannians
    Carlos JGMACHADO
    Juan de Dios PREZ
    Young Jin SUH
    Acta Mathematica Sinica, 2015, 31 (01) : 111 - 122
  • [29] Real hypersurfaces in the complex quadric with Killing structure Jacobi operator
    Jeong, Imsoon
    Suh, Young Jin
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 139 : 88 - 102
  • [30] Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator
    Jeong, Imsoon
    Kim, Seonhui
    Suh, Young Jin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 821 - 833