Exponential time decay of solutions to a nonlinear fourth-order parabolic equation

被引:0
|
作者
A. Jüngel
G. Toscani
机构
[1] Fachbereich Mathematik und Statistik,
[2] Universität Konstanz,undefined
[3] Fach D193,undefined
[4] D-78457 Konstanz,undefined
[5] Germany,undefined
[6] e-mail: juengel@fmi.uni-konstanz.de,undefined
[7] Dipartimento di Matematica,undefined
[8] Universitá degli Studi di Pavia,undefined
[9] via Ferrata 1,undefined
[10] I-27100 Pavia,undefined
[11] Italy,undefined
[12] e-mail: toscani@dimat.unipv.it,undefined
关键词
Key word. Asymptotic behavior, entropy dissipation, higher-order parabolic equation, diffusion equation.¶Mathematics Subject Classification (2000). 35B40, 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the large-time behavior of weak solutions to the nonlinear fourth-order parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_t = -(n(\log n)_{xx})_{xx}$\end{document} modeling interface fluctuations in spin systems. We study here the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \Omega =(0,1)$\end{document}, with n = 1, nx = 0 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial \Omega$\end{document}. In particular, we prove the exponential decay of u(x,t) towards the constant steady state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_\infty =1$\end{document} in the L1 norm for long times and we give the explicit rate of decay. The result is based on classical entropy estimates, and on detailed lower bounds for the entropy production.
引用
收藏
页码:377 / 386
页数:9
相关论文
共 50 条
  • [31] Some Properties of Solutions of a Fourth-Order Parabolic Equation for Image Processing
    Changchun Liu
    Manli Jin
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 333 - 353
  • [32] EXPONENTIAL DECAY OF SOLUTIONS TO A CLASS OF FOURTH-ORDER NONLINEAR HYPERBOLIC EQUATIONS MODELING THE OSCILLATIONS OF SUSPENSION BRIDGES
    Liu, Yang
    Yang, Chao
    OPUSCULA MATHEMATICA, 2022, 42 (02) : 239 - 255
  • [33] Complicated asymptotic behavior of solutions for the fourth-order parabolic equation with absorption
    Wu, Yuqiu
    Yin, Jingxue
    Wang, Liangwei
    Tu, Zhengwen
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [34] Time-periodic solution of a 2D fourth-order nonlinear parabolic equation
    Zhao, Xiaopeng
    Liu, Changchun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 349 - 364
  • [35] Time-periodic solution of a 2D fourth-order nonlinear parabolic equation
    XIAOPENG ZHAO
    CHANGCHUN LIU
    Proceedings - Mathematical Sciences, 2014, 124 : 349 - 364
  • [36] Positive solutions to a nonlinear fourth-order partial differential equation
    Liang, Bo
    Ji, Ruihong
    Zhu, Yingjie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (06) : 2853 - 2862
  • [37] Positive periodic solutions to a nonlinear fourth-order differential equation
    Jin, Chunhua
    Yin, Jingxue
    Wang, Zejia
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) : 1225 - 1235
  • [38] Continuous dependence of solutions to fourth-order nonlinear wave equation
    Gulec, Ipek
    Gur, Sevket
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 367 - 371
  • [39] Characteristics of Breather Solutions in the Fourth-Order Nonlinear Schrodinger Equation
    Du Zhifeng
    Song Lijun
    Wang Yan
    ACTA OPTICA SINICA, 2018, 38 (09)
  • [40] Global existence of solutions for a fourth-order nonlinear Schrodinger equation
    Guo, Cuihua
    Cui, Shangbin
    APPLIED MATHEMATICS LETTERS, 2006, 19 (08) : 706 - 711