Exponential time decay of solutions to a nonlinear fourth-order parabolic equation

被引:0
|
作者
A. Jüngel
G. Toscani
机构
[1] Fachbereich Mathematik und Statistik,
[2] Universität Konstanz,undefined
[3] Fach D193,undefined
[4] D-78457 Konstanz,undefined
[5] Germany,undefined
[6] e-mail: juengel@fmi.uni-konstanz.de,undefined
[7] Dipartimento di Matematica,undefined
[8] Universitá degli Studi di Pavia,undefined
[9] via Ferrata 1,undefined
[10] I-27100 Pavia,undefined
[11] Italy,undefined
[12] e-mail: toscani@dimat.unipv.it,undefined
关键词
Key word. Asymptotic behavior, entropy dissipation, higher-order parabolic equation, diffusion equation.¶Mathematics Subject Classification (2000). 35B40, 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the large-time behavior of weak solutions to the nonlinear fourth-order parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_t = -(n(\log n)_{xx})_{xx}$\end{document} modeling interface fluctuations in spin systems. We study here the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \Omega =(0,1)$\end{document}, with n = 1, nx = 0 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial \Omega$\end{document}. In particular, we prove the exponential decay of u(x,t) towards the constant steady state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_\infty =1$\end{document} in the L1 norm for long times and we give the explicit rate of decay. The result is based on classical entropy estimates, and on detailed lower bounds for the entropy production.
引用
收藏
页码:377 / 386
页数:9
相关论文
共 50 条
  • [21] Existence of Solutions to Nonlinear Fourth-Order Beam Equation
    Urszula Ostaszewska
    Ewa Schmeidel
    Małgorzata Zdanowicz
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [22] Existence of Solutions to Nonlinear Fourth-Order Beam Equation
    Ostaszewska, Urszula
    Schmeidel, Ewa
    Zdanowicz, Malgorzata
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (03)
  • [23] Scattering of solutions to the fourth-order nonlinear Schrodinger equation
    Hayashi, Nakao
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (03)
  • [24] A GENERAL FOURTH-ORDER PARABOLIC EQUATION
    Zhang, Chao
    Zhou, Shulin
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (02): : 265 - 281
  • [25] Blow-up, non-extinction and exponential growth of solutions to a fourth-order parabolic equation
    Baghaei, Khadijeh
    COMPTES RENDUS MECANIQUE, 2022, 350 (01): : 47 - 56
  • [26] Weak solutions of a nonlinear degenerate fourth-order parabolic equation via the topological degree method
    Yacini, Soukaina
    Allalou, Chakir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 13705 - 13717
  • [27] Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity
    Chang, Shuting
    Ye, Yaojun
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11): : 6225 - 6234
  • [28] Solutions of fourth-order parabolic equation modeling thin film growth
    Sandjo, A. N.
    Moutari, S.
    Gningue, Y.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7260 - 7283
  • [29] Some Properties of Solutions of a Fourth-Order Parabolic Equation for Image Processing
    Liu, Changchun
    Jin, Manli
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 333 - 353
  • [30] Asymptotic estimate of weak solutions in a fourth-order parabolic equation with logarithm
    Liu, Bingchen
    Li, Ke
    Li, Fengjie
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)