Inequalities for a polynomial and its derivative

被引:0
|
作者
V. K. Jain
机构
[1] Indian Institute of Technology,Mathematics Department
关键词
Inequalities; zeros; polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary entire functionf and anyr>0, letM(f,r):=max|z|=r |f(z)|. It is known that ifp is a polynomial of degreen having no zeros in the open unit disc, andm:=min|z|=1|p(z)|, then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} M(p',1) \leqslant \frac{n}{2}\{ M(p,1) - m), \hfill \\ M(p,R) \leqslant \left( {\frac{{R^n + 1}}{2}} \right)M(p,1) - m\left( {\frac{{R^n - 1}}{2}} \right),R > 1 \hfill \\ \end{gathered} $$ \end{document} It is also known that ifp has all its zeros in the closed unit disc, then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$M(p',1) \geqslant \frac{n}{2}\{ M(p,1) - m\} $$ \end{document}. The present paper contains certain generalizations of these inequalities.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [41] Integral inequalities for polar derivative of a polynomial
    Devi, Maisnam Triveni
    Krishnadas, Kshetrimayum
    Reingachan, N.
    Chanam, Barchand
    JOURNAL OF ANALYSIS, 2022, 30 (01): : 131 - 145
  • [42] On inequalities involving polar derivative of a polynomial
    Govil, N. K.
    Kumar, P.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 130 - 139
  • [43] Some inequalities for the polar derivative of a polynomial
    Abdul Aziz
    Wali Mohammad Shah
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1997, 107 : 263 - 270
  • [44] SOME INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL
    Gulzar, M. H.
    Zargar, B. A.
    Akhter, Rubia
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (04): : 567 - 576
  • [45] INEQUALITIES FOR THE GENERALIZED DERIVATIVE OF A COMPLEX POLYNOMIAL
    Bhat, F. A.
    Rather, N. A.
    Gulzar, S.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2023, 114 (128): : 71 - 80
  • [46] Integral inequalities for polar derivative of a polynomial
    Maisnam Triveni Devi
    Kshetrimayum Krishnadas
    N. Reingachan
    Barchand Chanam
    The Journal of Analysis, 2022, 30 : 131 - 145
  • [47] Some Inequalities Concerning the Polar Derivative of a Polynomial
    Mir, Abdullah
    Dar, Bilal
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (02): : 421 - 430
  • [48] Some inequalities concerning the polar derivative of a polynomial
    Mir, Abdullah
    Wani, Ajaz
    Gulzar, M. H.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (06) : 1387 - 1393
  • [49] Some LP inequalities for the polar derivative of a polynomial
    Govil, NK
    Nyuydinkong, G
    Tameru, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (02) : 618 - 626
  • [50] Turan Type Inequalities For The Polar Derivative Of A Polynomial
    Akhter, Tawheeda
    Zargar, Bashir Ahmad
    Gulzar, Manzoor Hussain
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 220 - 228