For an arbitrary entire functionf and anyr>0, letM(f,r):=max|z|=r |f(z)|. It is known that ifp is a polynomial of degreen having no zeros in the open unit disc, andm:=min|z|=1|p(z)|, then\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\begin{gathered} M(p',1) \leqslant \frac{n}{2}\{ M(p,1) - m), \hfill \\ M(p,R) \leqslant \left( {\frac{{R^n + 1}}{2}} \right)M(p,1) - m\left( {\frac{{R^n - 1}}{2}} \right),R > 1 \hfill \\ \end{gathered} $$
\end{document} It is also known that ifp has all its zeros in the closed unit disc, then\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$M(p',1) \geqslant \frac{n}{2}\{ M(p,1) - m\} $$
\end{document}. The present paper contains certain generalizations of these inequalities.