Partial groupoid actions on sets and topological spaces

被引:0
|
作者
Víctor Marín
Héctor Pinedo
机构
[1] Universidad del Tolima,Departamento de Matemáticas y Estadística
[2] Universidad Industrial de Santander,Escuela de Matemáticas
关键词
Partial groupoid action; Star injective functor; Covering; Star open; Graph open; Primary 20L05; 18A22; 18A23. Secondary 20N02; 22A22.;
D O I
暂无
中图分类号
学科分类号
摘要
Given a groupoid G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} we introduce the category of strict partial groupoid actions of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} and state an equivalence between this category and the category of star injective functors to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document}. Furthermore, fixing a partial action α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} we give categorical type relations between the action groupoids (G,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G},X)$$\end{document} and (G,XG),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}, X_\mathcal {G}),$$\end{document} being XG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathcal {G}$$\end{document} a universal globalization of X,  the coarse groupoid of X and the graph of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. Moreover, when G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} is a star open topological groupoid acting partially on a topological space X,  we provide conditions for which the partial action is topological and the corresponding quotient map q to XG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\mathcal {G}}$$\end{document} is open. Also, we prove that there is a quotient map XG→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathcal {G}\rightarrow Y$$\end{document}, being Y a topological space endowed with a global action and having X as an open subset.
引用
收藏
页码:940 / 956
页数:16
相关论文
共 50 条
  • [31] On Λ-generalized closed sets in topological spaces
    Caldas, X.
    Jafari, S.
    Noiri, T.
    ACTA MATHEMATICA HUNGARICA, 2008, 118 (04) : 337 - 343
  • [32] τ*-Generalized Closed Sets in Topological Spaces
    Pushpalatha, A.
    Eswaran, S.
    Rajarubi, P.
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1115 - +
  • [33] Regular sets in generalized topological spaces
    R. Jamunarani
    P. Jeyanthi
    Acta Mathematica Hungarica, 2012, 135 : 342 - 349
  • [34] Borel sets and functions in topological spaces
    J. Spurný
    Acta Mathematica Hungarica, 2010, 129 : 47 - 69
  • [35] On Paraopen Sets and Maps in Topological Spaces
    Ittanagi, Basavaraj M.
    Benchalli, Shivanagappa S.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (01): : 301 - 310
  • [36] ψ*-closed sets in fuzzy topological spaces
    M. A. Abd Allah
    A. S. Nawar
    Journal of the Egyptian Mathematical Society, 28 (1)
  • [37] NEGLIGIBLE SETS IN LINEAR TOPOLOGICAL SPACES
    BESSAGA, C
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1968, 16 (02): : 117 - &
  • [38] (Λ, sp)-open sets in topological spaces
    Boonpok, Chawalit
    Khampakdee, Jeeranunt
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 572 - 588
  • [39] On strong and weak sets in topological spaces
    Al-Abdulla, Raad Aziz Hussain
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (03) : 765 - 773
  • [40] Borel sets and functions in topological spaces
    Spurny, J.
    ACTA MATHEMATICA HUNGARICA, 2010, 129 (1-2) : 47 - 69