Partial groupoid actions on sets and topological spaces

被引:0
|
作者
Víctor Marín
Héctor Pinedo
机构
[1] Universidad del Tolima,Departamento de Matemáticas y Estadística
[2] Universidad Industrial de Santander,Escuela de Matemáticas
关键词
Partial groupoid action; Star injective functor; Covering; Star open; Graph open; Primary 20L05; 18A22; 18A23. Secondary 20N02; 22A22.;
D O I
暂无
中图分类号
学科分类号
摘要
Given a groupoid G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} we introduce the category of strict partial groupoid actions of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} and state an equivalence between this category and the category of star injective functors to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document}. Furthermore, fixing a partial action α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} we give categorical type relations between the action groupoids (G,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G},X)$$\end{document} and (G,XG),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}, X_\mathcal {G}),$$\end{document} being XG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathcal {G}$$\end{document} a universal globalization of X,  the coarse groupoid of X and the graph of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. Moreover, when G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} is a star open topological groupoid acting partially on a topological space X,  we provide conditions for which the partial action is topological and the corresponding quotient map q to XG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\mathcal {G}}$$\end{document} is open. Also, we prove that there is a quotient map XG→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathcal {G}\rightarrow Y$$\end{document}, being Y a topological space endowed with a global action and having X as an open subset.
引用
收藏
页码:940 / 956
页数:16
相关论文
共 50 条
  • [21] Δμ-sets and delμ-sets in generalized topological spaces
    Jeyanthi, Pon
    Nalayini, Periadurai
    Noiri, Takashi
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (03) : 403 - 407
  • [22] On Ω-closed sets and Ω-closed sets in topological spaces
    Noiri, T
    Sayed, OR
    ACTA MATHEMATICA HUNGARICA, 2005, 107 (04) : 307 - 318
  • [23] The fundamental groupoid as a topological groupoid: Lasso topology
    Pakdaman, Ali
    Shahini, Freshte
    TOPOLOGY AND ITS APPLICATIONS, 2021, 302
  • [24] Partial actions on convergence spaces
    Adu, Nathaniel
    Mikusinski, Piotr
    Richardson, Gary
    MATHEMATICA SLOVACA, 2022, 72 (04) : 1001 - 1016
  • [25] Partial actions on limit spaces
    Losert, Bernd
    Richardson, Gary
    APPLIED GENERAL TOPOLOGY, 2023, 24 (02): : 323 - 331
  • [26] Partial groupoid actions on R-categories: Globalization and the smash product
    Marin, Victor
    Pinedo, Hector
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (05)
  • [27] ON Λαg-SETS AND Λαg*-SETS IN TOPOLOGICAL SPACES
    Subhalakshmi, S.
    Balamani, N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 299 - 312
  • [28] Topological Groupoid Quantales
    A. Palmigiano
    R. Re
    Studia Logica, 2010, 95 : 125 - 137
  • [29] On generalized δ-semiclosed sets in topological spaces
    Park, Jin Han
    Song, Dae Seob
    Saadati, Reza
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1329 - 1338
  • [30] On Generalized αρ - Closed Sets in Topological Spaces
    Rajakumar, S.
    Matheswaran, M.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177