Partial groupoid actions on sets and topological spaces

被引:0
|
作者
Víctor Marín
Héctor Pinedo
机构
[1] Universidad del Tolima,Departamento de Matemáticas y Estadística
[2] Universidad Industrial de Santander,Escuela de Matemáticas
关键词
Partial groupoid action; Star injective functor; Covering; Star open; Graph open; Primary 20L05; 18A22; 18A23. Secondary 20N02; 22A22.;
D O I
暂无
中图分类号
学科分类号
摘要
Given a groupoid G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} we introduce the category of strict partial groupoid actions of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} and state an equivalence between this category and the category of star injective functors to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document}. Furthermore, fixing a partial action α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} we give categorical type relations between the action groupoids (G,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G},X)$$\end{document} and (G,XG),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}, X_\mathcal {G}),$$\end{document} being XG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathcal {G}$$\end{document} a universal globalization of X,  the coarse groupoid of X and the graph of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. Moreover, when G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} is a star open topological groupoid acting partially on a topological space X,  we provide conditions for which the partial action is topological and the corresponding quotient map q to XG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\mathcal {G}}$$\end{document} is open. Also, we prove that there is a quotient map XG→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\mathcal {G}\rightarrow Y$$\end{document}, being Y a topological space endowed with a global action and having X as an open subset.
引用
收藏
页码:940 / 956
页数:16
相关论文
共 50 条
  • [1] Partial groupoid actions on setsand topological spaces
    Marin, Victor
    Pinedo, Hector
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02): : 940 - 956
  • [2] Partial category actions on sets and topological spaces
    Nystedt, Patrik
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 671 - 683
  • [3] Topological dynamics of groupoid actions
    Flores, Felipe
    Mantoiu, Marius
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (03) : 1005 - 1047
  • [4] Partial Groupoid Actions on Smooth Manifolds
    Marin, Victor
    Pinedo, Hector
    Rodriguez, Jose L. Vilca
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (01):
  • [5] Galois correspondence for partial groupoid actions
    Lautenschlaeger, Wesley G.
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [6] Globalization of confluent partial actions on topological and metric spaces
    Megrelishvili, M
    Schröder, L
    TOPOLOGY AND ITS APPLICATIONS, 2004, 145 (1-3) : 119 - 145
  • [7] Groupoid actions on sets, duality and a morita context
    Della Flora, Saradia
    Flores, Daiana
    Morgado, Andrea
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 178 - 190
  • [8] ENVELOPING ALGEBRAS OF PARTIAL ACTIONS AS GROUPOID C*-ALGEBRAS
    Exel, R.
    Giordano, T.
    Goncalves, D.
    JOURNAL OF OPERATOR THEORY, 2011, 65 (01) : 197 - 210
  • [9] FUNDAMENTAL GROUPOID AS A TOPOLOGICAL GROUPOID
    BROWN, R
    DANESHNARUIE, G
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1975, 19 (MAR) : 237 - 244
  • [10] Topological aspect of monodromy groupoid for a topological internal groupoid
    Akiz, H. Fulya
    Mucuk, Osman
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183