High-frequency measurement of concentration in an isothermal methane–air gas mixture using spontaneous Raman spectroscopy

被引:0
|
作者
Jocelino Rodrigues
Lee Weller
Francesca De Domenico
Simone Hochgreb
机构
[1] University of Cambridge,Department of Engineering
[2] Delft University of Technology,Aerospace Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A high-frequency (1.5 kHz) spontaneous Raman spectroscopy measurement technique is developed and applied to measure external fluctuations generated in the local concentration of an isothermal binary gas mixture of methane and air. Raman excitation is provided by a high-frequency laser at 527 nm in dual-pulsed mode. The Stokes Raman signal is collected using an EMCCD camera coupled to a high-frequency intensifier as a shutter. The emitted signal is collected over the 596–627 nm wavelength range, which allows for the simultaneous tracking of methane and nitrogen Stokes Q-branch mode signals. Calibration curves are initially obtained for each species (CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CH}}_{4}$$\end{document} and N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{N}}_{2}$$\end{document}) based on steady-state concentrations, and further corrected during use to detect local unsteady mixture fluctuations at gas pulsation frequencies up to 250 Hz. The main novelty is the demonstration of Raman spectroscopy for the simultaneous multispecies measurement of unsteady concentrations of gas-phase methane and air mixtures using a laser beam with a high-repetition rate, low energy per pulse, combined with a high-frequency intensifier and a single camera.
引用
收藏
相关论文
共 50 条
  • [21] Detecting gas leakage using high-frequency signals generated by air-gun arrays
    Landro, Martin
    Hansteen, Fredrik
    Amundsen, Lasse
    GEOPHYSICS, 2017, 82 (02) : A7 - A12
  • [22] MEASUREMENT OF HIGH-FREQUENCY WAVES USING A WAVE FOLLOWER
    TANG, S
    SHEMDIN, OH
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC14) : 9832 - 9840
  • [23] Strain measurement using high-frequency diffraction grating
    Ma, Yaowu
    Kurita, Masanori
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60 (577): : 2144 - 2143
  • [24] Monitoring the Isothermal Dehydration of Crystalline Hydrates Using Low-Frequency Raman Spectroscopy
    Robert, Chima
    Fraser-Miller, Sara J.
    Berzins, Karlis
    Okeyo, Peter O.
    Rantanen, Jukka
    Rades, Thomas
    Gordon, Keith C.
    MOLECULAR PHARMACEUTICS, 2021, 18 (03) : 1264 - 1276
  • [25] HIGH-RESOLUTION INVERSE RAMAN-SPECTROSCOPY IN A METHANE-AIR FLAME
    OWYOUNG, A
    RAHN, LA
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1979, 15 (09) : D25 - D26
  • [26] AN EXPERIMENTAL AND NUMERICAL STUDY OF HIGH-FREQUENCY RAMAN-SCATTERING IN ARGON GAS
    CHAPEAUBLONDEAU, F
    TEBOUL, V
    BERRUE, J
    LEDUFF, Y
    PHYSICS LETTERS A, 1993, 173 (02) : 153 - 159
  • [27] A hydrogen gas concentration measurement method using the Raman lidar system
    Choi, In Young
    Baik, Sung Hoon
    Cha, Jung Ho
    Kim, Jin Ho
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (05)
  • [28] Estimation of Cell Concentration Using High-Frequency Ultrasonic Backscattering
    Chen, Show-Huie
    Lin, Yi-Hsun
    Li, Wen-Tyng
    Wang, Shyh-Hau
    Huang, Chih-Chung
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2012, 32 (03) : 157 - 162
  • [29] HYDROGEN GAS CONCENTRATION MEASUREMENT IN SMALL AREA USING RAMAN LIDAR MEASUREMENT TECHNNOLOGY
    Sugimoto, Sachiyo
    Asahi, Ippei
    Shiina, Tatuso
    28TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 28), 2018, 176