A Crossover Between Open Quantum Random Walks to Quantum Walks

被引:0
|
作者
Norio Konno
Kaname Matsue
Etsuo Segawa
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
[2] Kyushu University,Institute of Mathematics for Industry
[3] Kyushu University,International Institute for Carbon
[4] Yokohama National University,Neutral Energy Research (WPI
关键词
Quantum walk; Open quantum random walk; Perturbation theory for linear operators; Limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an intermediate walk continuously connecting an open quantum random walk and a quantum walk with parameters M∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in {{\mathbb {N}}}$$\end{document} controlling a decoherence effect; if M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document}, the walk coincides with an open quantum random walk, while M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document}, the walk coincides with a quantum walk. We define a measure which recovers usual probability measures on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document} for M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document} and M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document} and we observe intermediate behavior through numerical simulations for varied positive values M. In the case for M=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2$$\end{document}, we analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk. More precisely, we observe both the ballistically moving towards left and right sides and localization of this walker simultaneously. The analysis is based on Kato’s perturbation theory for linear operator. We further analyze this limit theorem in more detail and show that the above three modes are described by Gaussian distributions.
引用
收藏
相关论文
共 50 条
  • [31] Open quantum walks on graphs
    Attal, S.
    Petruccione, F.
    Sinayskiy, I.
    PHYSICS LETTERS A, 2012, 376 (18) : 1545 - 1548
  • [32] Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records
    Stéphane Attal
    Nadine Guillotin-Plantard
    Christophe Sabot
    Annales Henri Poincaré, 2015, 16 : 15 - 43
  • [33] Open quantum random walks and quantum Markov Chains on trees II: the recurrence
    Farrukh Mukhamedov
    Abdessatar Souissi
    Tarek Hamdi
    Amenallah Andolsi
    Quantum Information Processing, 22
  • [34] Clustering quantum Markov chains on trees associated with open quantum random walks
    Accardi, Luigi
    Andolsi, Amenallah
    Mukhamedov, Farrukh
    Rhaima, Mohamed
    Souissi, Abdessatar
    AIMS MATHEMATICS, 2023, 8 (10): : 23003 - 23015
  • [35] Open quantum random walks and quantum Markov Chains on trees II: the recurrence
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    Hamdi, Tarek
    Andolsi, Amenallah
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [36] Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records
    Attal, Stephane
    Guillotin-Plantard, Nadine
    Sabot, Christophe
    ANNALES HENRI POINCARE, 2015, 16 (01): : 15 - 43
  • [37] Quantum optical implementation of open quantum walks
    Sinayskiy, Ilya
    Petruccione, Francesco
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (02)
  • [38] Dissipative Quantum Computing with Open Quantum Walks
    Sinayskiy, Ilya
    Petruccione, Francesco
    ELEVENTH INTERNATIONAL CONFERENCE ON QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTATION (QCMC), 2014, 1633 : 186 - 188
  • [39] An Example of the Difference Between Quantum and Classical Random Walks
    Andrew M. Childs
    Edward Farhi
    Sam Gutmann
    Quantum Information Processing, 2002, 1 : 35 - 43
  • [40] Hypergroup Structures of Open Quantum Random Walks on Distance Sets
    Sawada, Yusuke
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2023, 30 (04):