A Crossover Between Open Quantum Random Walks to Quantum Walks

被引:0
|
作者
Norio Konno
Kaname Matsue
Etsuo Segawa
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
[2] Kyushu University,Institute of Mathematics for Industry
[3] Kyushu University,International Institute for Carbon
[4] Yokohama National University,Neutral Energy Research (WPI
关键词
Quantum walk; Open quantum random walk; Perturbation theory for linear operators; Limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an intermediate walk continuously connecting an open quantum random walk and a quantum walk with parameters M∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in {{\mathbb {N}}}$$\end{document} controlling a decoherence effect; if M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document}, the walk coincides with an open quantum random walk, while M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document}, the walk coincides with a quantum walk. We define a measure which recovers usual probability measures on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document} for M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document} and M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document} and we observe intermediate behavior through numerical simulations for varied positive values M. In the case for M=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2$$\end{document}, we analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk. More precisely, we observe both the ballistically moving towards left and right sides and localization of this walker simultaneously. The analysis is based on Kato’s perturbation theory for linear operator. We further analyze this limit theorem in more detail and show that the above three modes are described by Gaussian distributions.
引用
收藏
相关论文
共 50 条
  • [21] Quantum Random Walks and Thermalisation
    Alexander C. R. Belton
    Communications in Mathematical Physics, 2010, 300 : 317 - 329
  • [22] Quantum walks on a random environment
    Yin, Yue
    Katsanos, D. E.
    Evangelou, S. N.
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [23] QUANTUM RANDOM-WALKS
    ACCARDI, L
    WATSON, GS
    LECTURE NOTES IN MATHEMATICS, 1989, 1396 : 73 - 88
  • [24] Hyperfinite quantum random walks
    Gudder, S
    CHAOS SOLITONS & FRACTALS, 1996, 7 (05) : 669 - 679
  • [25] Quantum Random Walks and Thermalisation
    Belton, Alexander C. R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (02) : 317 - 329
  • [26] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [27] On algebraic and quantum random walks
    Ellinas, D
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2005, 18 : 174 - 200
  • [28] Aperiodic quantum random walks
    Ribeiro, P
    Milman, P
    Mosseri, R
    PHYSICAL REVIEW LETTERS, 2004, 93 (19) : 190503 - 1
  • [29] Lazy open quantum walks
    Kemp, Garreth
    Sinayskiy, Ilya
    Petruccione, Francesco
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [30] From quantum graphs to quantum random walks
    Tanner, GK
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 69 - 87