A Crossover Between Open Quantum Random Walks to Quantum Walks

被引:0
|
作者
Norio Konno
Kaname Matsue
Etsuo Segawa
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
[2] Kyushu University,Institute of Mathematics for Industry
[3] Kyushu University,International Institute for Carbon
[4] Yokohama National University,Neutral Energy Research (WPI
关键词
Quantum walk; Open quantum random walk; Perturbation theory for linear operators; Limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an intermediate walk continuously connecting an open quantum random walk and a quantum walk with parameters M∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in {{\mathbb {N}}}$$\end{document} controlling a decoherence effect; if M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document}, the walk coincides with an open quantum random walk, while M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document}, the walk coincides with a quantum walk. We define a measure which recovers usual probability measures on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document} for M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document} and M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document} and we observe intermediate behavior through numerical simulations for varied positive values M. In the case for M=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2$$\end{document}, we analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk. More precisely, we observe both the ballistically moving towards left and right sides and localization of this walker simultaneously. The analysis is based on Kato’s perturbation theory for linear operator. We further analyze this limit theorem in more detail and show that the above three modes are described by Gaussian distributions.
引用
收藏
相关论文
共 50 条
  • [1] A Crossover Between Open Quantum Random Walks to Quantum Walks
    Konno, Norio
    Matsue, Kaname
    Segawa, Etsuo
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (12)
  • [2] Open Quantum Random Walks
    S. Attal
    F. Petruccione
    C. Sabot
    I. Sinayskiy
    Journal of Statistical Physics, 2012, 147 : 832 - 852
  • [3] Open Quantum Random Walks
    Attal, S.
    Petruccione, F.
    Sabot, C.
    Sinayskiy, I.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) : 832 - 852
  • [4] Relation between random walks and quantum walks
    Boettcher, Stefan
    Falkner, Stefan
    Portugal, Renato
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [5] Open Quantum Random Walks and Quantum Markov Chains
    Dhahri, A.
    Mukhamedov, F.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (02) : 137 - 142
  • [6] Quantum stochastic walks: A generalization of classical random walks and quantum walks
    Whitfield, James D.
    Rodriguez-Rosario, Cesar A.
    Aspuru-Guzik, Alan
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [7] Open Quantum Random Walks and Quantum Markov Chains
    A. Dhahri
    F. Mukhamedov
    Functional Analysis and Its Applications, 2019, 53 : 137 - 142
  • [8] Limit Theorems for Open Quantum Random Walks
    Norio Konno
    Hyun Jae Yoo
    Journal of Statistical Physics, 2013, 150 : 299 - 319
  • [9] Homogeneous Open Quantum Random Walks on a Lattice
    Raffaella Carbone
    Yan Pautrat
    Journal of Statistical Physics, 2015, 160 : 1125 - 1153
  • [10] Limit Theorems for Open Quantum Random Walks
    Konno, Norio
    Yoo, Hyun Jae
    JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (02) : 299 - 319