Incremental Voronoi Diagrams

被引:0
|
作者
Sarah R. Allen
Luis Barba
John Iacono
Stefan Langerman
机构
[1] Carnegie Mellon University,Computer Science Department
[2] ETH Zürich,Department of Computer Science
[3] New York University,Department of Computer Science and Engineering, Tandon School of Engineering
[4] Université Libre de Bruxelles,Départment d’Informatique
来源
关键词
Voronoi diagrams; Incremental; Grappa tree; Link-cut; 68U05; 52C45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram (and several variants thereof) of a set S of n sites in the plane as sites are added to the set. To that effect, we define a general update operation for planar graphs that can be used to model the incremental construction of several variants of Voronoi diagrams as well as the incremental construction of an intersection of halfspaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. We show that the amortized number of edge insertions and removals needed to add a new site to the Voronoi diagram is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. A matching Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\sqrt{n})$$\end{document} combinatorial lower bound is shown, even in the case where the graph representing the Voronoi diagram is a tree. This contrasts with the O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log {n})$$\end{document} upper bound of Aronov et al. (LATIN 2006: Theoretical Informatics. Lecture Notes in Computer Science, Springer, Berlin, 2006) for farthest-point Voronoi diagrams in the special case where the points are inserted in clockwise order along their convex hull. We then present a semi-dynamic data structure that maintains the Voronoi diagram of a set S of n sites in convex position. This data structure supports the insertion of a new site p (and hence the addition of its Voronoi cell) and finds the asymptotically minimal number K of edge insertions and removals needed to obtain the diagram of S∪{p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup \{p\}$$\end{document} from the diagram of S, in time O(Kpolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(K\,\mathrm {polylog}\ n)$$\end{document} worst case, which is O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\;\mathrm {polylog}\ n)$$\end{document} amortized by the aforementioned combinatorial result. The most distinctive feature of this data structure is that the graph of the Voronoi diagram is maintained explicitly at all times and can be retrieved and traversed in the natural way; this contrasts with other known data structures supporting nearest neighbor queries. Our data structure supports general search operations on the current Voronoi diagram, which can, for example, be used to perform point location queries in the cells of the current Voronoi diagram in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time, or to determine whether two given sites are neighbors in the Delaunay triangulation.
引用
收藏
页码:822 / 848
页数:26
相关论文
共 50 条
  • [31] Sorting helps for Voronoi diagrams
    Chew, LP
    Fortune, S
    ALGORITHMICA, 1997, 18 (02) : 217 - 228
  • [32] ON THE CONSTRUCTION OF ABSTRACT VORONOI DIAGRAMS
    MEHLHORN, K
    STMEISER
    DUNLAING, C
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 415 : 227 - 239
  • [33] Voronoi diagrams for oriented spheres
    Aurenhammer, F.
    Wallner, J.
    Peternell, M.
    Pottmann, H.
    ISVD 2007: THE 4TH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS IN SCIENCE AND ENGINEERING 2007, PROCEEDINGS, 2007, : 33 - +
  • [34] Voronoi diagrams of moving points
    Albers, G
    Guibas, LJ
    Mitchell, JSB
    Roos, T
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1998, 8 (03) : 365 - 379
  • [35] ON LEVELS IN ARRANGEMENTS AND VORONOI DIAGRAMS
    MULMULEY, K
    DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (04) : 307 - 338
  • [36] Abstract Voronoi diagrams revisited
    Klein, Rolf
    Langetepe, Elmar
    Nilforoushan, Zahra
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09): : 885 - 902
  • [37] ON PARALLEL COMPUTATION OF VORONOI DIAGRAMS
    EVANS, DJ
    STOJMENOVIC, I
    PARALLEL COMPUTING, 1989, 12 (01) : 121 - 125
  • [38] Tropical Bisectors and Voronoi Diagrams
    Francisco Criado
    Michael Joswig
    Francisco Santos
    Foundations of Computational Mathematics, 2022, 22 : 1923 - 1960
  • [39] On Voronoi Diagrams and Medial Axes
    R. Fabbri
    L.F. Estrozi
    L. Da F. Costa
    Journal of Mathematical Imaging and Vision, 2002, 17 : 27 - 40
  • [40] CONCRETE AND ABSTRACT VORONOI DIAGRAMS
    KLEIN, R
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 400 : 1 - +