Incremental Voronoi Diagrams

被引:0
|
作者
Sarah R. Allen
Luis Barba
John Iacono
Stefan Langerman
机构
[1] Carnegie Mellon University,Computer Science Department
[2] ETH Zürich,Department of Computer Science
[3] New York University,Department of Computer Science and Engineering, Tandon School of Engineering
[4] Université Libre de Bruxelles,Départment d’Informatique
来源
关键词
Voronoi diagrams; Incremental; Grappa tree; Link-cut; 68U05; 52C45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram (and several variants thereof) of a set S of n sites in the plane as sites are added to the set. To that effect, we define a general update operation for planar graphs that can be used to model the incremental construction of several variants of Voronoi diagrams as well as the incremental construction of an intersection of halfspaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. We show that the amortized number of edge insertions and removals needed to add a new site to the Voronoi diagram is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. A matching Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\sqrt{n})$$\end{document} combinatorial lower bound is shown, even in the case where the graph representing the Voronoi diagram is a tree. This contrasts with the O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log {n})$$\end{document} upper bound of Aronov et al. (LATIN 2006: Theoretical Informatics. Lecture Notes in Computer Science, Springer, Berlin, 2006) for farthest-point Voronoi diagrams in the special case where the points are inserted in clockwise order along their convex hull. We then present a semi-dynamic data structure that maintains the Voronoi diagram of a set S of n sites in convex position. This data structure supports the insertion of a new site p (and hence the addition of its Voronoi cell) and finds the asymptotically minimal number K of edge insertions and removals needed to obtain the diagram of S∪{p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup \{p\}$$\end{document} from the diagram of S, in time O(Kpolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(K\,\mathrm {polylog}\ n)$$\end{document} worst case, which is O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\;\mathrm {polylog}\ n)$$\end{document} amortized by the aforementioned combinatorial result. The most distinctive feature of this data structure is that the graph of the Voronoi diagram is maintained explicitly at all times and can be retrieved and traversed in the natural way; this contrasts with other known data structures supporting nearest neighbor queries. Our data structure supports general search operations on the current Voronoi diagram, which can, for example, be used to perform point location queries in the cells of the current Voronoi diagram in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time, or to determine whether two given sites are neighbors in the Delaunay triangulation.
引用
收藏
页码:822 / 848
页数:26
相关论文
共 50 条
  • [21] Bregman Voronoi Diagrams
    Jean-Daniel Boissonnat
    Frank Nielsen
    Richard Nock
    Discrete & Computational Geometry, 2010, 44 : 281 - 307
  • [22] SIMPLIFIED VORONOI DIAGRAMS
    CANNY, J
    DONALD, B
    DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) : 219 - 236
  • [23] Voronoi Diagrams on orbifolds
    Dpto. Matemáticas, Estadística y Comp., Universidad de Cantabria, Santander 39071, Spain
    Comput Geom Theory Appl, 5 (219-230):
  • [24] Bregman Voronoi Diagrams
    Boissonnat, Jean-Daniel
    Nielsen, Frank
    Nock, Richard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) : 281 - 307
  • [25] Voronoi diagrams on the sphere
    Na, HS
    Lee, CN
    Cheong, O
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 183 - 194
  • [26] Recursive Voronoi diagrams
    Boots, B
    Shiode, N
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2003, 30 (01): : 113 - 124
  • [27] Voronoi Diagrams on orbifolds
    Mazon, M
    Recio, T
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (05): : 219 - 230
  • [28] On Bregman Voronoi Diagrams
    Nielsen, Frank
    Boissonnat, Jean-Daniel
    Nock, Richard
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 746 - +
  • [29] VORONOI DIAGRAMS IN A RIVER
    Sugihara, Kokichi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (01) : 29 - 48
  • [30] On the Relations Between SINR Diagrams and Voronoi Diagrams
    Parter, Merav
    Peleg, David
    AD-HOC, MOBILE, AND WIRELESS NETWORKS, 2015, 9143 : 225 - 237