Modeling and optimization of reactive cotton dyeing using response surface methodology combined with artificial neural network and particle swarm techniques

被引:0
|
作者
Jorge Marcos Rosa
Flavio Guerhardt
Silvestre Eduardo Rocha Ribeiro Júnior
Peterson A. Belan
Gustavo A. Lima
José Carlos Curvelo Santana
Fernando Tobal Berssaneti
Elias Basile Tambourgi
Rosangela Maria Vanale
Sidnei Alves de Araújo
机构
[1] State University of Campinas,Industrial Engineering Post Graduate Program
[2] Polytechnic School of University of São Paulo,Informatics and Knowledge Management Post Graduate Program
[3] USP,undefined
[4] SENAI Antoine Skaf – Textile,undefined
[5] Nove de Julho University,undefined
[6] Nove de Julho University,undefined
[7] Federal University of ABC,undefined
[8] Sorocaba Technology Park,undefined
关键词
Dyeing of cotton; Reactive dyestuff; Coloristic intensity; Response surface methodology; Artificial neural network; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2357 / 2367
页数:10
相关论文
共 50 条
  • [41] Water Level Prediction using Artificial Neural Network with Particle Swarm Optimization Model
    Panyadee, Pornnapa
    Champrasert, Paskorn
    Aryupong, Chuchoke
    2017 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOIC7), 2017,
  • [42] Optimization of Zinc Recovery from Sphalerite Using Response Surface Methodology and Particle Swarm Optimization
    Onukwuli, Okechukwu D.
    Nnanwube, Ikechukwu A.
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2022, 66 (01) : 20 - 29
  • [43] Efficient task scheduling on the cloud using artificial neural network and particle swarm optimization
    Nayak, Pritam Kumar
    Singh, Ravi Shankar
    Kushwaha, Shweta
    Bevara, Prasanth Kumar
    Kumar, Vinod
    Medara, Rambabu
    Concurrency and Computation: Practice and Experience, 2024, 36 (06)
  • [44] Particle swarm optimization feedforward neural network for modeling runoff
    K. K. Kuok
    S. Harun
    S. M. Shamsuddin
    International Journal of Environmental Science & Technology, 2010, 7 : 67 - 78
  • [45] Particle swarm optimization feedforward neural network for modeling runoff
    Kuok, K. K.
    Harun, S.
    Shamsuddin, S. M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2010, 7 (01) : 67 - 78
  • [46] Optimization for Artificial Neural Network with Adaptive Inertial Weight of Particle Swarm Optimization
    Park, Tae-Su
    Lee, Ju-Hong
    Choi, Bumghi
    PROCEEDINGS OF THE 8TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, 2009, : 481 - 485
  • [47] Modeling and Optimization for Konjac Vacuum Drying Based on Response Surface Methodology (RSM) and Artificial Neural Network (ANN)
    Zeng, Zhiheng
    Chen, Ming
    Wang, Xiaoming
    Wu, Weibin
    Zheng, Zefeng
    Hu, Zhibiao
    Ma, Baoqi
    PROCESSES, 2020, 8 (11) : 1 - 17
  • [48] Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks
    Nasouri, Komeil
    Bahrambeygi, Hossein
    Rabbi, Amir
    Shoushtari, Ahmad Mousavi
    Kaflou, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 126 (01) : 127 - 135
  • [49] Extract optimization and biological activities of Otidea onotica using Artificial Neural Network-Genetic Algorithm and response surface methodology techniques
    Sevindik, Mustafa
    Bal, Celal
    Krupodorova, Tetiana
    Gurgen, Aysenur
    Eraslan, Emre Cem
    BMC BIOTECHNOLOGY, 2025, 25 (01)
  • [50] Optimization of fermentation media for xanthan gum production from Xanthomonas campestris using Response Surface Methodology and Artificial Neural Network techniques
    Velu, Selvi
    Velayutham, Vijayagopal
    Manickkam, Sathiyamoorthy
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2016, 23 (05) : 353 - 361