Modeling and optimization of reactive cotton dyeing using response surface methodology combined with artificial neural network and particle swarm techniques

被引:0
|
作者
Jorge Marcos Rosa
Flavio Guerhardt
Silvestre Eduardo Rocha Ribeiro Júnior
Peterson A. Belan
Gustavo A. Lima
José Carlos Curvelo Santana
Fernando Tobal Berssaneti
Elias Basile Tambourgi
Rosangela Maria Vanale
Sidnei Alves de Araújo
机构
[1] State University of Campinas,Industrial Engineering Post Graduate Program
[2] Polytechnic School of University of São Paulo,Informatics and Knowledge Management Post Graduate Program
[3] USP,undefined
[4] SENAI Antoine Skaf – Textile,undefined
[5] Nove de Julho University,undefined
[6] Nove de Julho University,undefined
[7] Federal University of ABC,undefined
[8] Sorocaba Technology Park,undefined
关键词
Dyeing of cotton; Reactive dyestuff; Coloristic intensity; Response surface methodology; Artificial neural network; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2357 / 2367
页数:10
相关论文
共 50 条
  • [31] Modeling meteorological prediction using particle swarm optimization and neural network ensemble
    Wu, Jiansheng
    Jin, Long
    Liu, Mingzhe
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 3, PROCEEDINGS, 2006, 3973 : 1202 - 1209
  • [32] Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network
    Agu, Chinedu Matthew
    Menkiti, Matthew Chukwudi
    Ekwe, Ekwe Bassey
    Agulanna, Albert Chibuzor
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2020, 4 : 1 - 11
  • [33] A Modeling Study by Response Surface Methodology (RSM) and Artificial Neural Network (ANN) on Nitrobenzene Hydrogenation Optimization Using Rh Nanocatalyst
    Keypour, H.
    Noroozi, M.
    Rashidi, Alimorad
    Beigzadeh, R.
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2015, 45 (10) : 1580 - 1590
  • [34] Modeling and optimization of chromium adsorption onto clay using response surface methodology, artificial neural network, and equilibrium isotherm models
    Oskui, Fatemeh Notghi
    Aghdasinia, Hassan
    Sorkhabi, Mahsa Golghasemi
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2019, 38 (06)
  • [35] Artificial neural network modeling and response surface methodology of desalination by reverse osmosis
    Khayet, M.
    Cojocaru, C.
    Essalhi, M.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 368 (1-2) : 202 - 214
  • [36] Modeling and optimization of defluoridation by calcined Ca-Al-(NO3)-LDH using response surface methodology and artificial neural network combined with experimental design
    Gupta A.K.
    Ghosal P.S.
    Srivastava S.K.
    Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21 (03)
  • [37] Optimization of alumina leaching from microcline using particle swarm optimization and response surface methodology
    Nnanwube, Ikechukwu A.
    Onukwuli, Okechukwu D.
    Omotioma, Monday
    Ezekannagha, Chinyere B.
    Igwilo, Christopher N.
    Esonye, Chizoo
    Anadebe, Valentine C.
    Ume, Cyril S.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] Dyeing of Modified Cotton Fiber with Natural Terminalia arjuna Dye: Optimization of Dyeing Parameters Using Response Surface Methodology
    Sinha, Keka
    Aikat, Kaustav
    Das, Papita
    Datta, Siddhartha
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2016, 35 (03) : 719 - 728
  • [39] Efficient task scheduling on the cloud using artificial neural network and particle swarm optimization
    Nayak, Pritam Kumar
    Singh, Ravi Shankar
    Kushwaha, Shweta
    Bevara, Prasanth Kumar
    Kumar, Vinod
    Medara, Rambabu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (06):
  • [40] Hardware Implementation of Artificial Neural Network Training Using Particle Swarm Optimization on FPGA
    Cavuslu, Mehmet Ali
    Karakuzu, Cihan
    Sahin, Suhap
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2010, 13 (02): : 83 - 92