Generalized derivations on some convolution algebras

被引:0
|
作者
M. H. Ahmadi Gandomani
M. J. Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Locally compact abelian groups; Generalized derivations; -centralizing mappings; Singer–Wermer conjecture; Orthogonal generalized derivations; Primary 43A15; 16W25; Secondary 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact abelian group, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} be a weighted function on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^+$$\end{document}, and let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} be the Banach algebra L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (G)^*$$\end{document} or L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}. In this paper, we investigate generalized derivations on the noncommutative Banach algebra D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We characterize k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-(skew) centralizing generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and show that the zero map is the only k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-skew commuting generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We also investigate the Singer–Wermer conjecture for generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and prove that the Singer–Wermer conjecture holds for a generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} if and only if it is a derivation; or equivalently, it is nilpotent. Finally, we investigate the orthogonality of generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document} and give several necessary and sufficient conditions for orthogonal generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}.
引用
收藏
页码:223 / 241
页数:18
相关论文
共 50 条
  • [41] Additive derivations on generalized Arens algebras
    Albeverio S.
    Ayupov S.A.
    Abdullaev R.Z.
    Kudaybergenov K.K.
    Lobachevskii Journal of Mathematics, 2011, 32 (3) : 194 - 202
  • [42] Generalized (α, β, γ)-derivations on Lie C*-algebras
    Lu, Gang
    Jin, Yuanfeng
    Park, Choonkil
    AIMS MATHEMATICS, 2020, 5 (06): : 6949 - 6958
  • [43] The derivations of some evolution algebras
    Camacho, L. M.
    Gomez, J. R.
    Omirov, B. A.
    Turdibaev, R. M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (03): : 309 - 322
  • [44] Lie derivations of generalized matrix algebras
    Du, Yiqiu
    Wang, Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) : 2719 - 2726
  • [45] Skew derivations on generalized Weyl algebras
    Almulhem, Munerah
    Brzezinski, Tomasz
    JOURNAL OF ALGEBRA, 2018, 493 : 194 - 235
  • [46] Continuity of generalized derivations on JB*-algebras
    Gholampour, Mohammad
    Hejazian, Shirin
    QUAESTIONES MATHEMATICAE, 2018, 41 (02) : 227 - 238
  • [47] Generalized Derivations on Rings and Banach Algebras
    Sahebi, Shervin
    Rahmani, Venus
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 81 - 87
  • [48] A Characterization of Generalized Derivations of JSL Algebras
    Lin CHEN
    Fang Yan LU
    Acta Mathematica Sinica,English Series, 2017, (04) : 495 - 500
  • [49] Semi simple algebras and generalized derivations
    Hochschild, G
    AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 : 677 - 694
  • [50] A characterization of generalized derivations of JSL algebras
    Lin Chen
    Fang Yan Lu
    Acta Mathematica Sinica, English Series, 2017, 33 : 495 - 500