Generalized derivations on some convolution algebras

被引:0
|
作者
M. H. Ahmadi Gandomani
M. J. Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Locally compact abelian groups; Generalized derivations; -centralizing mappings; Singer–Wermer conjecture; Orthogonal generalized derivations; Primary 43A15; 16W25; Secondary 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact abelian group, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} be a weighted function on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^+$$\end{document}, and let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} be the Banach algebra L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (G)^*$$\end{document} or L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}. In this paper, we investigate generalized derivations on the noncommutative Banach algebra D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We characterize k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-(skew) centralizing generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and show that the zero map is the only k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-skew commuting generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We also investigate the Singer–Wermer conjecture for generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and prove that the Singer–Wermer conjecture holds for a generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} if and only if it is a derivation; or equivalently, it is nilpotent. Finally, we investigate the orthogonality of generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document} and give several necessary and sufficient conditions for orthogonal generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}.
引用
收藏
页码:223 / 241
页数:18
相关论文
共 50 条
  • [21] HOMOMORPHISMS AND DERIVATIONS ON WEIGHTED CONVOLUTION-ALGEBRAS
    GHAHRAMANI, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB): : 149 - 161
  • [22] ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS
    Ashraf, Mohammad
    Jabeen, Aisha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (03): : 733 - 744
  • [23] On skew derivations and generalized skew derivations in Banach algebras
    Khan, Abdul Nadim
    Ali, Shakir
    Alhazmi, Husain
    De Filippis, Vincenzo
    QUAESTIONES MATHEMATICAE, 2020, 43 (09) : 1259 - 1272
  • [24] Generalized derivations and generalized amenability of banach algebras
    Zohri, Ali
    Jabbari, Ali
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2013, 75 (04): : 137 - 144
  • [25] GENERALIZED DERIVATIONS AND GENERALIZED AMENABILITY OF BANACH ALGEBRAS
    Zohri, Ali
    Jabbari, Ali
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (04): : 137 - 144
  • [26] Generalized derivations associated with Hochschild 2-cocycles on some algebras
    Li, Jiankui
    Zhou, Jiren
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 909 - 932
  • [27] Generalized derivations associated with Hochschild 2-cocycles on some algebras
    Jiankui Li
    Jiren Zhou
    Czechoslovak Mathematical Journal, 2010, 60 : 909 - 932
  • [28] Generalized Derivations and Generalized Jordan Derivations on C*-Algebras through Zero Products
    Zivari-Kazempour, Abbas
    Bodaghi, Abasalt
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [29] Jordan generalized derivations on triangular algebras
    Li, Yanbo
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 841 - 849
  • [30] A note on generalized derivations in Banach algebras
    Liu, Cheng-Kai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 192 - 197