Generalized derivations on some convolution algebras

被引:0
|
作者
M. H. Ahmadi Gandomani
M. J. Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Locally compact abelian groups; Generalized derivations; -centralizing mappings; Singer–Wermer conjecture; Orthogonal generalized derivations; Primary 43A15; 16W25; Secondary 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact abelian group, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} be a weighted function on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^+$$\end{document}, and let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} be the Banach algebra L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (G)^*$$\end{document} or L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}. In this paper, we investigate generalized derivations on the noncommutative Banach algebra D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We characterize k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-(skew) centralizing generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and show that the zero map is the only k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-skew commuting generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We also investigate the Singer–Wermer conjecture for generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and prove that the Singer–Wermer conjecture holds for a generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} if and only if it is a derivation; or equivalently, it is nilpotent. Finally, we investigate the orthogonality of generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document} and give several necessary and sufficient conditions for orthogonal generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}.
引用
收藏
页码:223 / 241
页数:18
相关论文
共 50 条
  • [1] Generalized derivations on some convolution algebras
    Gandomani, M. H. Ahmadi
    Mehdipour, M. J.
    AEQUATIONES MATHEMATICAE, 2018, 92 (02) : 223 - 241
  • [2] On θ-centralizing θ-generalized Derivations on Convolution Algebras
    Eisaei, M.
    Mehdipour, M. J.
    Moghimi, Gh. R.
    JOURNAL OF MATHEMATICAL EXTENSION, 2024, 18 (05)
  • [3] Properties of derivations on some convolution algebras
    Pedersen, Thomas Vils
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (05): : 742 - 751
  • [4] Isomorphisms and generalized derivations of some algebras
    Li, Jiankui
    Pan, Zhidong
    Zhou, Jiren
    EXPOSITIONES MATHEMATICAE, 2010, 28 (04) : 365 - 373
  • [5] DERIVATIONS ON CONVOLUTION ALGEBRAS
    Mehdipour, Mohammad Javad
    Saeedi, Zahra
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (04) : 1123 - 1132
  • [6] Some Results on Generalized Derivations of BH-Algebras
    Ganesan, P.
    Kandaraj, N.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 1069 - 1077
  • [7] Generalized derivations and some structure theorems for Lie algebras
    Dorado-Aguilar, E.
    Garcia-Delgado, R.
    Martinez-Sigala, E.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (02)
  • [8] On Generalized Derivations of some classes of finite dimensional algebras
    Husain, Sh K. Said
    Basri, W.
    Abdulkadir, A.
    2ND INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS, 2019, 1366
  • [9] ON DERIVATIONS AND GENERALIZED DERIVATIONS OF BITONIC ALGEBRAS
    Yon, Yong Ho
    Ozbal, Sule Ayar
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 110 - 125
  • [10] Derivations of generalized Weyl algebras
    苏育才
    ScienceinChina,SerA., 2003, Ser.A.2003 (03) : 346 - 354