Quasilinear generalized parabolic Anderson model equation

被引:0
|
作者
I. Bailleul
A. Debussche
M. Hofmanová
机构
[1] Université de Rennes 1,IRMAR
[2] École Normale Supérieure de Rennes,IRMAR
[3] Technical University Berlin,Institute of Mathematics
关键词
Singular PDE; Quaslilinear parabolic equation; Paracontrolled calculus;
D O I
暂无
中图分类号
学科分类号
摘要
We present in this note a local in time well-posedness result for the singular 2-dimensional quasilinear generalized parabolic Anderson model equation ∂tu-a(u)Δu=g(u)ξ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t u - a(u)\Delta u = g(u)\xi . \end{aligned}$$\end{document}The key idea of our approach is a simple transformation of the equation which allows to treat the problem as a semilinear problem. The analysis is done within the elementary setting of paracontrolled calculus.
引用
收藏
页码:40 / 63
页数:23
相关论文
共 50 条
  • [41] Global existence and nonexistence of solutions for quasilinear parabolic equation
    Xu, Xianghui
    Lee, Yong-Hoon
    Fang, Zhong Bo
    BOUNDARY VALUE PROBLEMS, 2014,
  • [42] BOUNDARY REGULARITY OF WEAK SOLUTIONS TO A QUASILINEAR PARABOLIC EQUATION
    DEIGNAN, DJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A150 - A151
  • [43] EXTINCTION FOR A QUASILINEAR PARABOLIC EQUATION WITH A NONLINEAR GRADIENT SOURCE
    Liu, Dengming
    Mu, Chunlai
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (05): : 1329 - 1343
  • [44] On the solvability of a quasilinear parabolic partial differential equation at resonance
    Kuo, CC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) : 913 - 937
  • [45] Blow-up of solutions of a quasilinear parabolic equation
    Suzuki, Ryuichi
    Umeda, Noriaki
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (02) : 425 - 448
  • [46] A QUASILINEAR PARABOLIC MODEL FOR POPULATION EVOLUTION
    Derlet, Ann
    Takac, Peter
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (01): : 121 - 136
  • [47] Numerical Solution to an Inverse Problem for Quasilinear Parabolic Equation
    Aida-zade, Kamil
    Guliyev, Samir
    2012 IV INTERNATIONAL CONFERENCE PROBLEMS OF CYBERNETICS AND INFORMATICS (PCI), 2012,
  • [48] On the Long-time Behaviour of the Quasilinear Parabolic Equation
    Geredeli, P. G.
    Khanmamedov, A. Kh.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1987 - 1990
  • [49] A gradient maximum principle of solutions for a quasilinear parabolic equation
    Li, Qingwei
    Liao, Menglan
    ARCHIV DER MATHEMATIK, 2021, 116 (06) : 677 - 682
  • [50] EXISTENCE AND UNIQUENESS OF OPTIMAL CONTROLS FOR A QUASILINEAR PARABOLIC EQUATION
    SEIDMAN, TI
    ZHOU, HX
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (06) : 747 - 762