Quasilinear generalized parabolic Anderson model equation

被引:0
|
作者
I. Bailleul
A. Debussche
M. Hofmanová
机构
[1] Université de Rennes 1,IRMAR
[2] École Normale Supérieure de Rennes,IRMAR
[3] Technical University Berlin,Institute of Mathematics
关键词
Singular PDE; Quaslilinear parabolic equation; Paracontrolled calculus;
D O I
暂无
中图分类号
学科分类号
摘要
We present in this note a local in time well-posedness result for the singular 2-dimensional quasilinear generalized parabolic Anderson model equation ∂tu-a(u)Δu=g(u)ξ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t u - a(u)\Delta u = g(u)\xi . \end{aligned}$$\end{document}The key idea of our approach is a simple transformation of the equation which allows to treat the problem as a semilinear problem. The analysis is done within the elementary setting of paracontrolled calculus.
引用
收藏
页码:40 / 63
页数:23
相关论文
共 50 条