Quasilinear generalized parabolic Anderson model equation

被引:0
|
作者
I. Bailleul
A. Debussche
M. Hofmanová
机构
[1] Université de Rennes 1,IRMAR
[2] École Normale Supérieure de Rennes,IRMAR
[3] Technical University Berlin,Institute of Mathematics
关键词
Singular PDE; Quaslilinear parabolic equation; Paracontrolled calculus;
D O I
暂无
中图分类号
学科分类号
摘要
We present in this note a local in time well-posedness result for the singular 2-dimensional quasilinear generalized parabolic Anderson model equation ∂tu-a(u)Δu=g(u)ξ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t u - a(u)\Delta u = g(u)\xi . \end{aligned}$$\end{document}The key idea of our approach is a simple transformation of the equation which allows to treat the problem as a semilinear problem. The analysis is done within the elementary setting of paracontrolled calculus.
引用
收藏
页码:40 / 63
页数:23
相关论文
共 50 条
  • [1] Quasilinear generalized parabolic Anderson model equation
    Bailleul, I.
    Debussche, A.
    Hofmanova, M.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (01): : 40 - 63
  • [2] Global well-posedness for the nonlinear generalized parabolic Anderson model equation
    Zhang, Qi
    STOCHASTICS AND DYNAMICS, 2023, 23 (05)
  • [3] Generalized and numerical solution for a quasilinear parabolic equation with nonlocal conditions
    Kanca, Fatma
    Baglan, Irem
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (04): : 567 - 581
  • [4] The quasilinear parabolic Kirchhoff equation
    Dawidowski, Lukasz
    OPEN MATHEMATICS, 2017, 15 : 382 - 392
  • [5] GLOBAL EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTIONS FOR A GENERALIZED QUASILINEAR PARABOLIC EQUATION WITH APPLICATION TO A GLIOBLASTOMA GROWTH MODEL
    Wen, Zijuan
    Fan, Meng
    Asiri, Asim M.
    Alzahrani, Ebraheem O.
    El-Dessoky, Mohamed M.
    Kuang, Yang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (02) : 407 - 420
  • [6] Constrained Evolution for a Quasilinear Parabolic Equation
    Pierluigi Colli
    Gianni Gilardi
    Jürgen Sprekels
    Journal of Optimization Theory and Applications, 2016, 170 : 713 - 734
  • [8] Constrained Evolution for a Quasilinear Parabolic Equation
    Colli, Pierluigi
    Gilardi, Gianni
    Sprekels, Juergen
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) : 713 - 734
  • [9] IDENTIFICATION OF NONLINEARITY OF A QUASILINEAR PARABOLIC EQUATION
    CHAVENT, G
    LEMONNIER, P
    APPLIED MATHEMATICS AND OPTIMIZATION, 1974, 1 (02): : 121 - 162
  • [10] Quenching profile for a quasilinear parabolic equation
    Guo, JS
    Hu, B
    QUARTERLY OF APPLIED MATHEMATICS, 2000, 58 (04) : 613 - 626