On the 2-class field tower of some imaginary biquadratic number fields

被引:0
|
作者
Elliot Benjamin
机构
[1] Mathematics of Unity College,Mathematics Department
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
2-class field tower; Imaginary biquadratic number field; Metacyclic group; Capitulation; Ambiguous class group; Fundamental unit;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=Q({\sqrt d,\sqrt{-q}})$$\end{document} be an imaginary biquadratic number field with Clk,2, the 2-class group of k, isomorphic to Z/2Z × Z/2mZ, m > 1, with q a prime congruent to 3 mod 4 and d a square-free positive integer relatively prime to q. For a number of fields k of the above type we determine if the 2-class field tower of k has length greater than or equal to 2. To establish these results we utilize capitulation of ideal classes in the three unramified quadratic extensions of k, ambiguous class number formulas, results concerning the fundamental units of real biquadratic number fields, and criteria for imaginary quadratic number fields to have 2-class field tower length 1.
引用
收藏
页码:103 / 110
页数:7
相关论文
共 50 条
  • [41] ON THE RANK OF THE 2-CLASS GROUP OF THE HILBERT 2-CLASS FIELD OF SOME QUADRATIC FIELDS
    Benjamin, Elliot
    Snyder, C.
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (04): : 1163 - 1193
  • [42] On 2-class field towers for quadratic number fields with 2-class group of type (2, 2)
    Gerth, F
    GLASGOW MATHEMATICAL JOURNAL, 1998, 40 : 63 - 69
  • [43] IMAGINARY BICYCLIC BIQUADRATIC FIELDS WITH CLASS-NUMBER-1
    BROWN, E
    PARRY, CJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1974, 266 (NRMAA): : 118 - 120
  • [44] ON THE 2-CLASS GROUP OF SOME NUMBER FIELDS WITH LARGE DEGREE
    Chems-Eddin, Mohamed Mahmoud
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    ARCHIVUM MATHEMATICUM, 2021, 57 (01): : 13 - 26
  • [45] HILBERT 2-CLASS FIELD TOWERS OF INERT IMAGINARY QUADRATIC FUNCTION FIELDS
    Jung, Hwanyup
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2013, 20 (02): : 79 - 87
  • [46] On the Hilbert 2-class fields of some real quadratic number fields and applications
    Aaboun, B.
    Zekhnini, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3277 - 3298
  • [47] On the 2-class number of some real cyclic quartic number fields I
    Abdelmalek Azizi
    Mohammed Tamimi
    Abdelkader Zekhnini
    Boletín de la Sociedad Matemática Mexicana, 2024, 30
  • [48] On the 2-class number of some real cyclic quartic number fields I
    Azizi, Abdelmalek
    Tamimi, Mohammed
    Zekhnini, Abdelkader
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (01):
  • [49] On the 2-class field tower of and the Galois group of its second Hilbert 2-class field
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Taous, Mohammed
    COLLECTANEA MATHEMATICA, 2014, 65 (01) : 131 - 141
  • [50] NOTE ON THE HILBERT 2-CLASS FIELD TOWER
    Azizi, Abdelmalek
    Chems-Eddin, Mohamed Mahmoud
    Zekhnini, Abdelkader
    MATHEMATICA BOHEMICA, 2022, : 513 - 524