On the 2-class field tower of some imaginary biquadratic number fields

被引:0
|
作者
Elliot Benjamin
机构
[1] Mathematics of Unity College,Mathematics Department
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
2-class field tower; Imaginary biquadratic number field; Metacyclic group; Capitulation; Ambiguous class group; Fundamental unit;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=Q({\sqrt d,\sqrt{-q}})$$\end{document} be an imaginary biquadratic number field with Clk,2, the 2-class group of k, isomorphic to Z/2Z × Z/2mZ, m > 1, with q a prime congruent to 3 mod 4 and d a square-free positive integer relatively prime to q. For a number of fields k of the above type we determine if the 2-class field tower of k has length greater than or equal to 2. To establish these results we utilize capitulation of ideal classes in the three unramified quadratic extensions of k, ambiguous class number formulas, results concerning the fundamental units of real biquadratic number fields, and criteria for imaginary quadratic number fields to have 2-class field tower length 1.
引用
收藏
页码:103 / 110
页数:7
相关论文
共 50 条