On the 2-class field tower of some imaginary biquadratic number fields

被引:0
|
作者
Elliot Benjamin
机构
[1] Mathematics of Unity College,Mathematics Department
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
2-class field tower; Imaginary biquadratic number field; Metacyclic group; Capitulation; Ambiguous class group; Fundamental unit;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=Q({\sqrt d,\sqrt{-q}})$$\end{document} be an imaginary biquadratic number field with Clk,2, the 2-class group of k, isomorphic to Z/2Z × Z/2mZ, m > 1, with q a prime congruent to 3 mod 4 and d a square-free positive integer relatively prime to q. For a number of fields k of the above type we determine if the 2-class field tower of k has length greater than or equal to 2. To establish these results we utilize capitulation of ideal classes in the three unramified quadratic extensions of k, ambiguous class number formulas, results concerning the fundamental units of real biquadratic number fields, and criteria for imaginary quadratic number fields to have 2-class field tower length 1.
引用
收藏
页码:103 / 110
页数:7
相关论文
共 50 条
  • [1] On the 2-class field tower of some imaginary biquadratic number fields
    Benjamin, E
    RAMANUJAN JOURNAL, 2006, 11 (01): : 103 - 110
  • [2] On the Hilbert 2-Class Field Tower of Some Imaginary Biquadratic Number Fields
    Mohamed Mahmoud Chems-Eddin
    Abdelmalek Azizi
    Abdelkader Zekhnini
    Idriss Jerrari
    Czechoslovak Mathematical Journal, 2021, 71 : 269 - 281
  • [3] ON THE HILBERT 2-CLASS FIELD TOWER OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Chems-Eddin, Mohamed Mahmoud
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Jerrari, Idriss
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 269 - 281
  • [4] On the rank of the 2-class group of some imaginary biquadratic number fields
    A. Mouhib
    S. Rouas
    Acta Mathematica Hungarica, 2022, 167 : 295 - 308
  • [5] ON THE RANK OF THE 2-CLASS GROUP OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Mouhib, A.
    Rouas, S.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 295 - 308
  • [6] Correction to: On the rank of the 2-class group of some imaginary biquadratic number fields
    A. Mouhib
    S. Rouas
    Acta Mathematica Hungarica, 2024, 172 : 287 - 287
  • [7] On imaginary quadratic number fields with 2-class group of rank 4 and infinite 2-class field tower
    Benjamin, E
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (02) : 257 - 266
  • [9] On 2-class field towers of some imaginary quadratic number fields
    Lemmermeyer, F
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1997, 67 (1): : 205 - 214
  • [10] ON THE 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUARTIC CYCLIC NUMBER FIELDS
    Azizi, Abdelmalek
    Jerrari, Idriss
    Zekhnini, Abdelkader
    Talbi, Mohammed
    COLLOQUIUM MATHEMATICUM, 2019, 158 (01) : 103 - 118