Standing waves of the quintic NLS equation on the tadpole graph

被引:0
|
作者
Diego Noja
Dmitry E. Pelinovsky
机构
[1] Università di Milano Bicocca,Dipartimento di Matematica e Applicazioni
[2] McMaster University,Department of Mathematics and Statistics
来源
Calculus of Variations and Partial Differential Equations | 2020年 / 59卷
关键词
35Q55; 81Q35; 35R02;
D O I
暂无
中图分类号
学科分类号
摘要
The tadpole graph consists of a circle and a half-line attached at a vertex. We analyze standing waves of the nonlinear Schrödinger equation with quintic power nonlinearity equipped with the Neumann–Kirchhoff boundary conditions at the vertex. The profile of the standing wave with the frequency ω∈(-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,0)$$\end{document} is characterized as a global minimizer of the quadratic part of energy constrained to the unit sphere in L6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^6$$\end{document}. The set of standing waves includes the set of ground states, which are the global minimizers of the energy at constant mass (L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm), but it is actually wider. While ground states exist only for a certain interval of masses, the standing waves exist for every ω∈(-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,0)$$\end{document} and correspond to a bigger interval of masses. It is proven that there exist critical frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document} and ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document} with -∞<ω1<ω0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\infty< \omega _1< \omega _0 < 0$$\end{document} such that the standing waves are the ground state for ω∈[ω0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in [\omega _0,0)$$\end{document}, local constrained minima of the energy for ω∈(ω1,ω0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (\omega _1,\omega _0)$$\end{document} and saddle points of the energy at constant mass for ω∈(-∞,ω1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,\omega _1)$$\end{document}. Proofs make use of the variational methods and the analytical theory for differential equations.
引用
收藏
相关论文
共 50 条
  • [41] KAM for Beating Solutions of the Quintic NLS
    E. Haus
    M. Procesi
    Communications in Mathematical Physics, 2017, 354 : 1101 - 1132
  • [42] EXISTENCE OF PERIODIC WAVES FOR A PERTURBED QUINTIC BBM EQUATION
    Guo, Lina
    Zhao, Yulin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) : 4689 - 4703
  • [43] Asymptotic stability of small standing solitary waves of the one-dimensional cubic-quintic Schrödinger equation
    Martel, Yvan
    INVENTIONES MATHEMATICAE, 2024, 237 (03) : 1253 - 1328
  • [44] Instability of ground states for the NLS equation with potential on the star graph
    Ardila, Alex H.
    Cely, Liliana
    Goloshchapova, Nataliia
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 3703 - 3732
  • [45] Instability of ground states for the NLS equation with potential on the star graph
    Alex H. Ardila
    Liliana Cely
    Nataliia Goloshchapova
    Journal of Evolution Equations, 2021, 21 : 3703 - 3732
  • [46] Failure of scattering to standing waves for a Schrodinger equation with long-range nonlinearity on star graph
    Aoki, Kazuki
    Inui, Takahisa
    Mizutani, Haruya
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 297 - 312
  • [47] Hierarchy of solutions to the NLS equation and multi-rogue waves
    Gaillard, P.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [48] THE QUINTIC NLS ON PERTURBATIONS OF R3
    Jao, Casey
    AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (04) : 981 - 1035
  • [49] The defocusing quintic NLS in four space dimensions
    Dodson, Benjamin
    Miao, Changxing
    Murphy, Jason
    Zheng, Jiqiang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 759 - 787
  • [50] Existence and stability of standing waves for one dimensional NLS with triple power nonlinearities
    Liu, Fei Justina
    Tsai, Tai-Peng
    Zwiers, Ian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211