Standing waves of the quintic NLS equation on the tadpole graph

被引:0
|
作者
Diego Noja
Dmitry E. Pelinovsky
机构
[1] Università di Milano Bicocca,Dipartimento di Matematica e Applicazioni
[2] McMaster University,Department of Mathematics and Statistics
来源
Calculus of Variations and Partial Differential Equations | 2020年 / 59卷
关键词
35Q55; 81Q35; 35R02;
D O I
暂无
中图分类号
学科分类号
摘要
The tadpole graph consists of a circle and a half-line attached at a vertex. We analyze standing waves of the nonlinear Schrödinger equation with quintic power nonlinearity equipped with the Neumann–Kirchhoff boundary conditions at the vertex. The profile of the standing wave with the frequency ω∈(-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,0)$$\end{document} is characterized as a global minimizer of the quadratic part of energy constrained to the unit sphere in L6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^6$$\end{document}. The set of standing waves includes the set of ground states, which are the global minimizers of the energy at constant mass (L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm), but it is actually wider. While ground states exist only for a certain interval of masses, the standing waves exist for every ω∈(-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,0)$$\end{document} and correspond to a bigger interval of masses. It is proven that there exist critical frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document} and ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document} with -∞<ω1<ω0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\infty< \omega _1< \omega _0 < 0$$\end{document} such that the standing waves are the ground state for ω∈[ω0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in [\omega _0,0)$$\end{document}, local constrained minima of the energy for ω∈(ω1,ω0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (\omega _1,\omega _0)$$\end{document} and saddle points of the energy at constant mass for ω∈(-∞,ω1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,\omega _1)$$\end{document}. Proofs make use of the variational methods and the analytical theory for differential equations.
引用
收藏
相关论文
共 50 条
  • [21] Instability of standing waves for fractional NLS with combined nonlinearities
    Li, Zaizheng
    Luo, Haijun
    Zhang, Zhitao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [22] UNSTABLE NORMALIZED STANDING WAVES FOR THE SPACE PERIODIC NLS
    Ackermann, Nils
    Weth, Tobias
    ANALYSIS & PDE, 2019, 12 (05): : 1177 - 1213
  • [23] Stability of standing waves for NLS with perturbed Lame potential
    Cuccagna, S
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 223 (01) : 112 - 160
  • [24] Standing lattice solitons in the discrete NLS equation with saturation
    Alfimov, G. L.
    Korobeinikov, A. S.
    Lustri, C. J.
    Pelinovsky, D. E.
    NONLINEARITY, 2019, 32 (09) : 3445 - 3484
  • [25] On the Ground State for the NLS Equation on a General Graph
    Finco, Domenico
    ADVANCES IN QUANTUM MECHANICS: CONTEMPORARY TRENDS AND OPEN PROBLEMS, 2017, 18 : 153 - 167
  • [26] ASYMPTOTIC STABILITY FOR STANDING WAVES OF A NLS EQUATION WITH SUBCRITICAL CONCENTRATED NONLINEARITY IN DIMENSION THREE: NEUTRAL MODES
    Adami, Riccardo
    Noja, Diego
    Ortoleva, Cecilia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 5837 - 5879
  • [27] Dispersive effects for the Schrodinger equation on the tadpole graph
    Mehmeti, Felix Ali
    Ammari, Kais
    Nicaise, Serge
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) : 262 - 280
  • [28] Standing waves on a flower graph
    Kairzhan, Adilbek
    Marangell, Robert
    Pelinovsky, Dmitry E.
    Xiao, Ke Liang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 271 : 719 - 763
  • [29] Asymptotic Formula for "Transparent Points" for Cubic-Quintic Discrete NLS Equation
    Alfimov, G. L.
    Titov, R. R.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2019, 40 (05) : 452 - 466
  • [30] Strong Instability of Standing Waves for a System NLS with Quadratic Interaction
    Van Duong Dinh
    Acta Mathematica Scientia, 2020, 40 : 515 - 528