Standing waves of the quintic NLS equation on the tadpole graph

被引:0
|
作者
Diego Noja
Dmitry E. Pelinovsky
机构
[1] Università di Milano Bicocca,Dipartimento di Matematica e Applicazioni
[2] McMaster University,Department of Mathematics and Statistics
关键词
35Q55; 81Q35; 35R02;
D O I
暂无
中图分类号
学科分类号
摘要
The tadpole graph consists of a circle and a half-line attached at a vertex. We analyze standing waves of the nonlinear Schrödinger equation with quintic power nonlinearity equipped with the Neumann–Kirchhoff boundary conditions at the vertex. The profile of the standing wave with the frequency ω∈(-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,0)$$\end{document} is characterized as a global minimizer of the quadratic part of energy constrained to the unit sphere in L6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^6$$\end{document}. The set of standing waves includes the set of ground states, which are the global minimizers of the energy at constant mass (L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm), but it is actually wider. While ground states exist only for a certain interval of masses, the standing waves exist for every ω∈(-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,0)$$\end{document} and correspond to a bigger interval of masses. It is proven that there exist critical frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document} and ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document} with -∞<ω1<ω0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\infty< \omega _1< \omega _0 < 0$$\end{document} such that the standing waves are the ground state for ω∈[ω0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in [\omega _0,0)$$\end{document}, local constrained minima of the energy for ω∈(ω1,ω0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (\omega _1,\omega _0)$$\end{document} and saddle points of the energy at constant mass for ω∈(-∞,ω1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in (-\infty ,\omega _1)$$\end{document}. Proofs make use of the variational methods and the analytical theory for differential equations.
引用
收藏
相关论文
共 50 条