Unified primal-dual active set method for dynamic frictional contact problems

被引:1
|
作者
Abide, Stephane [1 ]
Barboteu, Mikael [1 ]
Cherkaoui, Soufiane [1 ]
Dumont, Serge [2 ]
机构
[1] Univ Perpignan Via Domitia, Lab Math & Phys, 52 Ave Paul Alduy, F-66860 Perpignan, France
[2] Univ Nimes, Inst Montpellierain Alexander Grothendieck, Site Carmes,Pl Gabriel Peri, F-30000 Nimes, France
基金
欧盟地平线“2020”;
关键词
Granular media; Elasticity; Unilateral constraint; Friction; Rigid body; Deformable body; Discrete element method; Nonsmooth contact dynamics; Semi-smooth Newton method; Primal-dual active set; Numerical simulations; NUMERICAL-METHODS; ALGORITHMS; INEQUALITY; STRATEGY;
D O I
10.1186/s13663-022-00729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a semi-smooth Newton method and a primal-dual active set strategy to solve dynamical contact problems with friction. The conditions of contact with Coulomb's friction can be formulated in the form of a fixed point problem related to a quasi-optimization one thanks to the semi-smooth Newton method. This method is based on the use of the primal-dual active set (PDAS) strategy. The main idea here is to find the correct subset A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} of nodes that are in contact (active) opposed to those which are not in contact (inactive). For each case, the nonlinear boundary condition is replaced by a suitable linear one. Numerical experiments on both hyper-elastic problems and rigid granular materials are presented to show the efficiency of the proposed method.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Primal-dual active set method for evaluating American put options on zero-coupon bonds
    Zhang, Qi
    Wang, Qi
    Song, Haiming
    Hao, Yongle
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [42] Primal-Dual Active-Set Methods for Large-Scale Optimization
    Robinson, Daniel P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) : 137 - 171
  • [43] Primal-Dual Active-Set Methods for Large-Scale Optimization
    Daniel P. Robinson
    Journal of Optimization Theory and Applications, 2015, 166 : 137 - 171
  • [44] Primal-dual active set strategy for large scale optimization of cardiac defibrillation
    Chamakuri, Nagaiah
    Kunisch, Karl
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 178 - 193
  • [45] A Unified Primal Dual Active Set Algorithm for Nonconvex Sparse Recovery
    Huang, Jian
    Jiao, Yuling
    Jin, Bangti
    Liu, Jin
    Lu, Xiliang
    Yang, Can
    STATISTICAL SCIENCE, 2021, 36 (02) : 215 - 238
  • [46] Primal-Dual Active-Set Algorithm for Chemical Equilibrium Problems Related to the Modeling of Atmospheric Inorganic Aerosols
    N. R. Amundson
    A. Caboussat
    J. W. He
    J. H. Seinfeld
    K. Y. Yoo
    Journal of Optimization Theory and Applications, 2006, 128 : 469 - 498
  • [47] Parallel primal-dual active-set algorithm with nonlinear and linear preconditioners
    Zhang, Guangliang
    Yang, Haijian
    Cheng, Tianpei
    Yang, Chao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [48] Primal-dual active-set algorithm for chemical equilibrium problems related to the modeling of atmospheric inorganic aerosols
    Amundson, N. R.
    Caboussat, A.
    He, J. W.
    Seinfeld, J. H.
    Yoo, K. Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 128 (03) : 469 - 498
  • [49] On monotone and primal-dual active set schemes for lp-type problems, p(0,1]
    Ghilli, Daria
    Kunisch, Karl
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (01) : 45 - 85
  • [50] INVERSE PROBLEMS WITH POISSON NOISE: PRIMAL AND PRIMAL-DUAL SPLITTING
    Dupe, F. -X.
    Fadili, M. J.
    Starck, J. -L.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,