Unified primal-dual active set method for dynamic frictional contact problems

被引:1
|
作者
Abide, Stephane [1 ]
Barboteu, Mikael [1 ]
Cherkaoui, Soufiane [1 ]
Dumont, Serge [2 ]
机构
[1] Univ Perpignan Via Domitia, Lab Math & Phys, 52 Ave Paul Alduy, F-66860 Perpignan, France
[2] Univ Nimes, Inst Montpellierain Alexander Grothendieck, Site Carmes,Pl Gabriel Peri, F-30000 Nimes, France
基金
欧盟地平线“2020”;
关键词
Granular media; Elasticity; Unilateral constraint; Friction; Rigid body; Deformable body; Discrete element method; Nonsmooth contact dynamics; Semi-smooth Newton method; Primal-dual active set; Numerical simulations; NUMERICAL-METHODS; ALGORITHMS; INEQUALITY; STRATEGY;
D O I
10.1186/s13663-022-00729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a semi-smooth Newton method and a primal-dual active set strategy to solve dynamical contact problems with friction. The conditions of contact with Coulomb's friction can be formulated in the form of a fixed point problem related to a quasi-optimization one thanks to the semi-smooth Newton method. This method is based on the use of the primal-dual active set (PDAS) strategy. The main idea here is to find the correct subset A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} of nodes that are in contact (active) opposed to those which are not in contact (inactive). For each case, the nonlinear boundary condition is replaced by a suitable linear one. Numerical experiments on both hyper-elastic problems and rigid granular materials are presented to show the efficiency of the proposed method.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Primal-dual active set method for pricing American better-of option on two assets
    Gao, Yu
    Song, Haiming
    Wang, Xiaoshen
    Zhang, Kai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 80
  • [32] A UNIFIED FRAMEWORK FOR PRIMAL-DUAL METHODS IN MINIMUM COST NETWORK FLOW PROBLEMS
    BERTSEKAS, DP
    MATHEMATICAL PROGRAMMING, 1985, 32 (02) : 125 - 145
  • [33] Adaptive Parallel Primal-Dual Method for Saddle Point Problems
    Zhang, Xiayang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (01) : 187 - 210
  • [34] A Universal Accelerated Primal-Dual Method for Convex Optimization Problems
    Luo, Hao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 280 - 312
  • [35] A primal-dual method for conic constrained distributed optimization problems
    Aybat, Necdet Serhat
    Hamedani, Erfan Yazdandoost
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [36] A general primal-dual envelope method for convex programming problems
    Wright, SE
    SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 405 - 414
  • [37] A primal-dual method for linear programming problems with fuzzy variables
    Ebrahimnejad, A.
    Nasseri, S. H.
    Lotfi, F. Hosseinzadeh
    Soltanifar, M.
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2010, 4 (02) : 189 - 209
  • [38] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504
  • [39] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504
  • [40] Algorithm for the network flow monitoring set based on primal-dual method
    Liu, Xiang-Hui
    Yin, Jian-Ping
    Lu, Xi-Cheng
    Cai, Zhi-Ping
    Zhao, Jian-Min
    Ruan Jian Xue Bao/Journal of Software, 2006, 17 (04): : 838 - 844