Unified primal-dual active set method for dynamic frictional contact problems

被引:1
|
作者
Abide, Stephane [1 ]
Barboteu, Mikael [1 ]
Cherkaoui, Soufiane [1 ]
Dumont, Serge [2 ]
机构
[1] Univ Perpignan Via Domitia, Lab Math & Phys, 52 Ave Paul Alduy, F-66860 Perpignan, France
[2] Univ Nimes, Inst Montpellierain Alexander Grothendieck, Site Carmes,Pl Gabriel Peri, F-30000 Nimes, France
基金
欧盟地平线“2020”;
关键词
Granular media; Elasticity; Unilateral constraint; Friction; Rigid body; Deformable body; Discrete element method; Nonsmooth contact dynamics; Semi-smooth Newton method; Primal-dual active set; Numerical simulations; NUMERICAL-METHODS; ALGORITHMS; INEQUALITY; STRATEGY;
D O I
10.1186/s13663-022-00729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a semi-smooth Newton method and a primal-dual active set strategy to solve dynamical contact problems with friction. The conditions of contact with Coulomb's friction can be formulated in the form of a fixed point problem related to a quasi-optimization one thanks to the semi-smooth Newton method. This method is based on the use of the primal-dual active set (PDAS) strategy. The main idea here is to find the correct subset A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} of nodes that are in contact (active) opposed to those which are not in contact (inactive). For each case, the nonlinear boundary condition is replaced by a suitable linear one. Numerical experiments on both hyper-elastic problems and rigid granular materials are presented to show the efficiency of the proposed method.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Inexact primal-dual active set method for solving elastodynamic frictional contact problems
    Abide, Stephane
    Barboteu, Mikael
    Cherkaoui, Soufiane
    Danan, David
    Dumont, Serge
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 82 : 36 - 59
  • [2] A primal-dual active set method for solving multi-rigid-body dynamic contact problems
    Barboteu, Mikael
    Dumont, Serge
    MATHEMATICS AND MECHANICS OF SOLIDS, 2018, 23 (03) : 489 - 503
  • [3] A primal-dual active set strategy for non-linear multibody contact problems
    Hüeber, S
    Wohlmuth, BI
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) : 3147 - 3166
  • [4] A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction
    Hueeber, S.
    Stadler, G.
    Wohlmuth, B. I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 572 - 596
  • [5] A Primal-Dual Active Set Strategy for Finite Deformation Dual Mortar Contact
    Popp, Alexander
    Gee, Michael W.
    Wall, Wolfgang A.
    RECENT ADVANCES IN CONTACT MECHANICS, 2013, 56 : 151 - 171
  • [6] The primal-dual active set method for nonlinear optimal control problems with bilateral constraints
    Ito, K
    Kunisch, K
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) : 357 - 376
  • [7] The primal-dual active set strategy as a semismooth Newton method
    Hintermüller, M
    Ito, K
    Kunisch, K
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 865 - 888
  • [8] The Primal-Dual Active Set Method for a Class of Nonlinear Problems with T-Monotone Operators
    He, Xiahui
    Yang, Peng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [9] A finite deformation mortar contact formulation using a primal-dual active set strategy
    Popp, Alexander
    Gee, Michael W.
    Wall, Wolfgang A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) : 1354 - 1391
  • [10] Primal-Dual Active Set Method for American Lookback Put Option Pricing
    Song, Haiming
    Wang, Xiaoshen
    Zhang, Kai
    Zhang, Qi
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 603 - 614