Multipath feedforward network for single image super-resolution

被引:0
|
作者
Mingyu Shen
Pengfei Yu
Ronggui Wang
Juan Yang
Lixia Xue
Min Hu
机构
[1] Hefei University of Technology,College of Computer and Information
来源
关键词
Super-resolution; Convolutional neural network; Multipath feedforward network; Staged feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Single image super-resolution (SR) models which based on convolutional neural network mostly use chained stacking to build the network. It ignores the role of hierarchical features and relationship between layers, resulting in the loss of high-frequency components. To address these drawbacks, we introduce a novel multipath feedforward network (MFNet) based on staged feature fusion unit (SFF). By changing the connection between networks, MFNet strengthens the inter-layer relationship and improves the information flow in the network, thereby extracting more abundant high-frequency components. Firstly, SFF extracts and integrates hierarchical features by dense connection, which expands the information flow of the network. Afterwards, we use adaptive method to learn effective features in hierarchical features. Then, in order to strengthen relationship between layers and fully use the hierarchical features, we use multi-feedforward structure to connect each SFF, which enables multipath feature re-usage and explores more abundant high-frequency components on this basis. Finally, the image reconstruction is realized by combining the shallow features and the global residual. Extensive benchmark evaluation shows that the performance of MFNet has a significant improvement over the state-of-the-art methods.
引用
收藏
页码:19621 / 19640
页数:19
相关论文
共 50 条
  • [31] Two-stage Network For Single Image Super-Resolution
    Han, Yuzhuo
    Du, Xiaobiao
    Yang, Zhi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 880 - 887
  • [32] Lightweight adaptive weighted network for single image super-resolution
    Li, Zheng
    Wang, Chaofeng
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 211
  • [33] Multiple Residual Learning Network for Single Image Super-Resolution
    Liu, Renhe
    Li, Sumei
    Hou, Chunping
    Lei, Guoqing
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [34] Deep Differential Convolutional Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    IEEE ACCESS, 2019, 7 : 37555 - 37564
  • [35] Channel Splitting Network for Single MR Image Super-Resolution
    Zhao, Xiaole
    Zhang, Yulun
    Zhang, Tao
    Zou, Xueming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5649 - 5662
  • [36] Nested Dense Attention Network for Single Image Super-Resolution
    Qiu, Cheng
    Yao, Yirong
    Du, Yuntao
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 250 - 258
  • [37] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    The Visual Computer, 2024, 40 : 41 - 52
  • [38] Single Image Super-Resolution Reconstruction based on the ResNeXt Network
    Nan, Fangzhe
    Zeng, Qingliang
    Xing, Yanni
    Qian, Yurong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (45-46) : 34459 - 34470
  • [39] CANS: Combined Attention Network for Single Image Super-Resolution
    Muhammad, Wazir
    Aramvith, Supavadee
    Onoye, Takao
    IEEE ACCESS, 2024, 12 : 167498 - 167517
  • [40] Lightweight blueprint residual network for single image super-resolution
    Hao, Fangwei
    Wu, Jiesheng
    Liang, Weiyun
    Xu, Jing
    Li, Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250