Multipath feedforward network for single image super-resolution

被引:0
|
作者
Mingyu Shen
Pengfei Yu
Ronggui Wang
Juan Yang
Lixia Xue
Min Hu
机构
[1] Hefei University of Technology,College of Computer and Information
来源
关键词
Super-resolution; Convolutional neural network; Multipath feedforward network; Staged feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Single image super-resolution (SR) models which based on convolutional neural network mostly use chained stacking to build the network. It ignores the role of hierarchical features and relationship between layers, resulting in the loss of high-frequency components. To address these drawbacks, we introduce a novel multipath feedforward network (MFNet) based on staged feature fusion unit (SFF). By changing the connection between networks, MFNet strengthens the inter-layer relationship and improves the information flow in the network, thereby extracting more abundant high-frequency components. Firstly, SFF extracts and integrates hierarchical features by dense connection, which expands the information flow of the network. Afterwards, we use adaptive method to learn effective features in hierarchical features. Then, in order to strengthen relationship between layers and fully use the hierarchical features, we use multi-feedforward structure to connect each SFF, which enables multipath feature re-usage and explores more abundant high-frequency components on this basis. Finally, the image reconstruction is realized by combining the shallow features and the global residual. Extensive benchmark evaluation shows that the performance of MFNet has a significant improvement over the state-of-the-art methods.
引用
收藏
页码:19621 / 19640
页数:19
相关论文
共 50 条
  • [21] Lightweight group convolutional network for single image super-resolution
    Yang, Aiping
    Yang, Bingwang
    Ji, Zhong
    Pang, Yanwei
    Shao, Ling
    INFORMATION SCIENCES, 2020, 516 : 220 - 233
  • [22] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [23] Recurrent Embedded Hourglass Network for Single Image Super-Resolution
    Liu, Nanyan
    Gao, Guangpu
    Xu, Xinyu
    IEEE ACCESS, 2020, 8 : 166176 - 166183
  • [24] Fused pyramid attention network for single image super-resolution
    Chen, Shi
    Bi, Xiuping
    Zhang, Lefei
    IET IMAGE PROCESSING, 2023, 17 (06) : 1681 - 1693
  • [25] Efficient residual attention network for single image super-resolution
    Fangwei Hao
    Taiping Zhang
    Linchang Zhao
    Yuanyan Tang
    Applied Intelligence, 2022, 52 : 652 - 661
  • [26] DANS: Deep Attention Network for Single Image Super-Resolution
    Talreja, Jagrati
    Aramvith, Supavadee
    Onoye, Takao
    IEEE ACCESS, 2023, 11 : 84379 - 84397
  • [27] Single image super-resolution via a ternary attention network
    Yang, Lianping
    Tang, Jian
    Niu, Ben
    Fu, Haoyue
    Zhu, Hegui
    Jiang, Wuming
    Wang, Xin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13067 - 13081
  • [28] Adaptive deep residual network for single image super-resolution
    Shuai Liu
    Ruipeng Gang
    Chenghua Li
    Ruixia Song
    Computational Visual Media, 2019, 5 : 391 - 401
  • [29] GUN: Gradual Upsampling Network for Single Image Super-Resolution
    Zhao, Yang
    Li, Guoqing
    Xie, Wenjun
    Jia, Wei
    Min, Hai
    Liu, Xiaoping
    IEEE ACCESS, 2018, 6 : 39363 - 39374
  • [30] Efficient residual attention network for single image super-resolution
    Hao, Fangwei
    Zhang, Taiping
    Zhao, Linchang
    Tang, Yuanyan
    APPLIED INTELLIGENCE, 2022, 52 (01) : 652 - 661