Computing resource allocation scheme of IOV using deep reinforcement learning in edge computing environment

被引:0
|
作者
Yiwei Zhang
Min Zhang
Caixia Fan
Fuqiang Li
Baofang Li
机构
[1] Henan Agricultural University,College of Sciences
[2] State Grid Henan Skills Training Center,undefined
关键词
Internet of Vehicles; Mobile edge computing; Reinforcement learning; Experience replay method; Resource allocation; Offloading strategy;
D O I
暂无
中图分类号
学科分类号
摘要
With the emergence and development of 5G technology, Mobile Edge Computing (MEC) has been closely integrated with Internet of Vehicles (IoV) technology, which can effectively support and improve network performance in IoV. However, the high-speed mobility of vehicles and diversity of communication quality make computing task offloading strategies more complex. To solve the problem, this paper proposes a computing resource allocation scheme based on deep reinforcement learning network for mobile edge computing scenarios in IoV. Firstly, the task resource allocation model for IoV in corresponding edge computing scenario is determined regarding the computing capacity of service nodes and vehicle moving speed as constraints. Besides, the mathematical model for task offloading and resource allocation is established with the minimum total computing cost as objective function. Then, deep Q-learning network based on deep reinforcement learning network is proposed to solve the mathematical model of resource allocation. Moreover, experience replay method is used to solve the instability of nonlinear approximate function neural network, which can avoid falling into dimension disaster and ensure the low-overhead and low-latency operation requirements of resource allocation. Finally, simulation results show that proposed scheme can effectively allocate the computing resources of IoV in edge computing environment. When the number of user uploaded data is 10K bits and the number of terminals is 15, it still shows the excellent network performance of low-overhead and low-latency.
引用
收藏
相关论文
共 50 条
  • [41] Deep Reinforcement Learning for Joint Offloading and Resource Allocation in Fog Computing
    Bai, Wenle
    Qian, Cheng
    PROCEEDINGS OF 2021 IEEE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2021, : 131 - 134
  • [42] Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment
    Xiang, Hui
    Zhang, Meiyu
    Jian, Chengfeng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3323 - 3339
  • [43] Multi-Agent Deep Reinforcement Learning-Based Partial Task Offloading and Resource Allocation in Edge Computing Environment
    Ke, Hongchang
    Wang, Hui
    Sun, Hongbin
    ELECTRONICS, 2022, 11 (15)
  • [44] Multiuser Resource Control With Deep Reinforcement Learning in IoT Edge Computing
    Lei, Lei
    Xu, Huijuan
    Xiong, Xiong
    Zheng, Kan
    Xiang, Wei
    Wang, Xianbin
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (06) : 10119 - 10133
  • [45] Caching and Computing Resource Allocation in Cooperative Heterogeneous 5G Edge Networks Using Deep Reinforcement Learning
    Bose, Tushar
    Chatur, Nilesh
    Baberwal, Sonil
    Adhya, Aneek
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 4161 - 4178
  • [46] Deep Reinforcement Learning Based Approach for Online Service Placement and Computation Resource Allocation in Edge Computing
    Liu, Tong
    Ni, Shenggang
    Li, Xiaoqiang
    Zhu, Yanmin
    Kong, Linghe
    Yang, Yuanyuan
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (07) : 3870 - 3881
  • [47] RADEAN: A Resource Allocation Model Based on Deep Reinforcement Learning and Generative Adversarial Networks in Edge Computing
    Yu, Zhaoyang
    Zhao, Sinong
    Su, Tongtong
    Liu, Wenwen
    Liu, Xiaoguang
    Wang, Gang
    Wang, Zehua
    Leung, Victor C. M.
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2023, PT I, 2024, 593 : 257 - 277
  • [48] Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning
    Wu, Yinyu
    Zhang, Xuhui
    Ren, Jinke
    Xing, Huijun
    Shen, Yanyan
    Cui, Shuguang
    IEEE Networking Letters, 2024, 6 (04): : 237 - 241
  • [49] Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Yan, Jia
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) : 5404 - 5419
  • [50] Deep Reinforcement Learning Based Edge Computing Network Aided Resource Allocation Algorithm for Smart Grid
    Chi, Yingying
    Zhang, Yi
    Liu, Yong
    Zhu, Hailong
    Zheng, Zhe
    Liu, Rui
    Zhang, Peiying
    IEEE ACCESS, 2023, 11 : 6541 - 6550