An extension of one direction in Marty’s normality criterion

被引:0
|
作者
Jürgen Grahl
Shahar Nevo
机构
[1] University of Würzburg,Department of Mathematics
[2] Bar-Ilan University,Department of Mathematics
来源
关键词
Marty’s theorem; Normal families; Nevanlinna theory; 30A10; 30D35; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following extension of one direction in Marty’s theorem: If k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is a natural number, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document} and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} is a family of functions meromorphic on a domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} all of whose poles have multiplicity at least kα-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{k}{\alpha -1}$$\end{document}, then the normality of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} implies that the family |f(k)|1+|f|α:f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \frac{|f^{(k)}|}{1+|f|^\alpha }\,:\, f\in \mathcal{F }\right\} \end{aligned}$$\end{document}is locally uniformly bounded.
引用
收藏
页码:205 / 217
页数:12
相关论文
共 50 条
  • [41] On the Pyatetskii-Shapiro Criterion of Normality
    N. G. Moshchevitin
    I. D. Shkredov
    Mathematical Notes, 2003, 73 : 539 - 550
  • [42] GENERALIZATION OF OKAS HYPERSURFACE NORMALITY CRITERION
    MARKOE, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (03): : A398 - A398
  • [43] On a Normality Criterion of W. Schwick
    P. V. Dovbush
    The Journal of Geometric Analysis, 2021, 31 : 5355 - 5358
  • [44] A normality criterion for a family of meromorphic functions
    Gopal Datt
    Sanjay Kumar
    Monatshefte für Mathematik, 2016, 180 : 193 - 204
  • [45] Little extension of Euler's criterion for quadratic residue
    Domingues, Victor Pires
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1080 - 1090
  • [46] Little extension of Euler’s criterion for quadratic residue
    Victor Pires Domingues
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 1080 - 1090
  • [47] The one and the many: America's struggle for the common-good - Marty,ME
    Sleeper, J
    NEW YORK TIMES BOOK REVIEW, 1997, : 37 - 37
  • [48] Editor’s letter one direction
    Taylor, Leanne
    British Plastics and Rubber, 2020, 2020 (January-February):
  • [49] Hedgehog frames and a cardinal extension of normality
    Gutierrez Garcia, Javier
    Carollo, Imanol Mozo
    Picado, Jorge
    Walters-Wayland, Joanne
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (06) : 2345 - 2370
  • [50] DUNGUNDJI EXTENSION THEOREM AND COLLECTIONWISE NORMALITY
    HEATH, RW
    LUTZER, DJ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (08): : 827 - 830