Hedgehog frames and a cardinal extension of normality

被引:3
|
作者
Gutierrez Garcia, Javier [1 ]
Carollo, Imanol Mozo [1 ,3 ]
Picado, Jorge [2 ]
Walters-Wayland, Joanne [3 ]
机构
[1] Univ Basque Country, Dept Matemat, UPV EHU, Apdo 644, Bilbao 48080, Spain
[2] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
[3] Chapman Univ, Dept Math & Comp Sci, CECAT, Orange, CA 92866 USA
关键词
MAPS;
D O I
10.1016/j.jpaa.2018.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The hedgehog metric topology is presented here in a pointfree form, by specifying its generators and relations. This allows us to deal with the pointfree version of continuous (metric) hedgehog-valued functions that arises from it. We prove that the countable coproduct of the metric hedgehog frame with k spines is universal in the class of metric frames of weight k.N-0. We then study k-collectionwise normality, a cardinal extension of normality, in frames. We prove that this is the necessary and sufficient condition under which Urysohn separation and Tietze extension-type results hold for continuous hedgehog-valued functions. We show furthermore that k-collectionwise normality is hereditary with respect to F-sigma-sublocales and invariant under closed maps. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2345 / 2370
页数:26
相关论文
共 50 条
  • [1] ORTHOCOMPACTNESS AND NORMALITY OF PRODUCTS WITH A CARDINAL FACTOR
    KEMOTO, N
    YAJIMA, Y
    TOPOLOGY AND ITS APPLICATIONS, 1993, 49 (02) : 141 - 148
  • [2] Normality and closed projections of products with a cardinal factor
    Kemoto, N
    Nogura, T
    Yajima, Y
    TOPOLOGY AND ITS APPLICATIONS, 1996, 69 (03) : 217 - 226
  • [3] EXTENSION METHODS IN CARDINAL ARITHMETIC
    ELLENTUCK, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (01) : 307 - +
  • [4] THE CARDINAL cov(N), D-SPACES AND MONOTONE NORMALITY
    Zhang, Hang
    Zhang, Shuguo
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (04): : 1357 - 1369
  • [5] DUNGUNDJI EXTENSION THEOREM AND COLLECTIONWISE NORMALITY
    HEATH, RW
    LUTZER, DJ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (08): : 827 - 830
  • [6] Transfinite Extension to Qm-normality Theory
    Shahar Nevo
    Results in Mathematics, 2003, 44 (1-2) : 141 - 156
  • [7] The Development of Cardinal Extension: From Counting to Exact Equality
    Le, Khuyen N.
    Schneider, Rose M.
    Barner, David
    DEVELOPMENTAL PSYCHOLOGY, 2025,
  • [8] CARDINAL RANKING OF ALTERNATIVE ACTIONS - EXTENSION OF THE PROMETHEE METHOD
    DIAKOULAKI, D
    KOUMOUTSOS, N
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1991, 53 (03) : 337 - 347
  • [9] Affine dual frames and Extension Principles
    Atreas, Nikolaos
    Melas, Antonios
    Stavropoulos, Theodoros
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (01) : 51 - 62
  • [10] An extension of one direction in Marty’s normality criterion
    Jürgen Grahl
    Shahar Nevo
    Monatshefte für Mathematik, 2014, 174 : 205 - 217